OBJECTIVE: The objective of this study was to investigate the effects of four different polyols, namely, ethylene glycol, erythritol, xylitol and sorbitol on the acid-denatured states of CGB lectin.
METHODS: CGB lectin was subjected to acid denaturation at pH 2.5 and pH 1.5, both in the absence and presence of 30% (w/v) polyols, i.e. ethylene glycol, erythritol, xylitol and sorbitol. Thermal denaturation of the acid-denatured states was also studied in the absence and presence of these polyols. Different spectroscopic probes such as tryptophan fluorescence, ANS fluorescence and far-UV CD spectral signal were used to monitor structural changes in the acid-denatured states of CGB lectin in the presence of polyols.
RESULTS: Presence of erythritol, xylitol and sorbitol in the incubation mixture was found to stabilize the lectin at both pH 2.5 and pH 1.5, as evident from the burial of the hydrophobic clusters and decreased polarity around Trp residues. These polyols also stabilized the acid-denatured states of CGB lectin against thermal denaturation by shifting the thermal transition curves towards higher temperatures. Exposure of the acid-denatured states of CGB lectin, obtained at pH 2.5 and pH 1.5 to 61°C and 51°C, respectively, induced formation of non-native β-structures, compared to that present at 25°C, and this phenomenon was significantly suppressed in the presence of these polyols. Based on the spectral data, both sorbitol and erythritol appeared to exude better stabilizing effect. On the other hand, ethylene glycol was shown to destabilize the aciddenatured states of CGB lectin.
CONCLUSION: Thermal stabilization of the lectin was noticed in the presence of erythritol, xylitol and sorbitol at both pH 2.5 and pH 1.5. These polyols also stabilize the secondary and tertiary structures of the acid-denatured CGB lectin at 25°C. Ethylene glycol was proved to be a destabilizer of the acid-denatured CGB lectin.
PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions.
STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay.
METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions.
CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.