Displaying all 16 publications

Abstract:
Sort:
  1. Müller CP, Yang Y, Singh D, Lenz B, Müller E
    Nervenarzt, 2024 Sep;95(9):824-829.
    PMID: 39085520 DOI: 10.1007/s00115-024-01721-6
    BACKGROUND: Kratom/ketum is a psychoactive herbal preparation that has been used for a long time as a remedy and performance-enhancing substance in Southeast Asia. The advancement of globalization is making kratom increasingly more available in the western world, where it is becoming increasingly more used.

    OBJECTIVE: The current research on kratom and its ingredients is presented.

    MATERIAL AND METHODS: An overview of the use and effects of kratom is exemplary given on the basis of reports. The instrumentalization of the drug and its consequences up to the development of addiction are discussed.

    RESULTS: Consumption is accompanied by several instrumentalizeable effects so that kratom is used as a therapeutic substance in the self-management of pain, anxiety and depression as well as other substance addictions. Another benefit comes from the performance-enhancing effects on physical work and in a social context. Consumption is usually well controlled, rarely escalates and has few and mostly mild aversive side effects. The danger arises from consumption particularly when there is an escalation of the dose and from mixed consumption with other psychoactive substances. The main alkaloid mitragynine and the more potent 7‑hydroxy-mitragynine are considered mainly responsible for the effect. Both have a complex pharmacology that involves partial µ‑opioid receptor agonism.

    DISCUSSION: Epidemiological, clinical and neurochemical studies have shown that kratom only has a limited addictive drug profile, which might suggest a medical use as a remedy or substitute in addiction treatment.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use
  2. Singh D, Narayanan S, Vicknasingam B
    Brain Res Bull, 2016 09;126(Pt 1):41-46.
    PMID: 27178014 DOI: 10.1016/j.brainresbull.2016.05.004
    INTRODUCTION: The objective of the paper was to highlight the differences in the traditional and non-traditional users of kratom in the South East Asian and Western contexts.

    METHOD: A literature survey of published kratom studies among humans was conducted. Forty published studies relevant to the objective were reviewed.

    RESULTS: Apart from the differences in the sources of supply, patterns of use and social acceptability of kratom within these two regions, the most interesting finding is its evolution to a recreational drug in both settings and the severity of the adverse effects of kratom use reported in the West. While several cases of toxicity and death have emerged in the West, such reports have been non-existent in South East Asia where kratom has had a longer history of use. We highlight the possible reasons for this as discussed in the literature. More importantly, it should be borne in mind that the individual clinical case-reports emerging from the West that link kratom use to adverse reactions or fatalities frequently pertained to kratom used together with other substances. Therefore, there is a danger of these reports being used to strengthen the case for legal sanction against kratom. This would be unfortunate since the experiences from South East Asia suggest considerable potential for therapeutic use among people who use drugs.

    CONCLUSION: Despite its addictive properties, reported side-effects and its tendency to be used a recreational drug, more scientific clinical human studies are necessary to determine its potential therapeutic value.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use*
  3. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, et al.
    Int J Mol Sci, 2021 Nov 23;22(23).
    PMID: 34884440 DOI: 10.3390/ijms222312638
    Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
    Matched MeSH terms: Alkaloids/therapeutic use
  4. Ismail I, Wahab S, Sidi H, Das S, Lin LJ, Razali R
    Curr Drug Targets, 2019;20(2):166-172.
    PMID: 28443503 DOI: 10.2174/1389450118666170425154120
    Kratom (Mitragyna speciosa), a naturally existing plant found in South-East Asia, is traditionally used as a herb to help elevate a person's energy and also to treat numerous medical ailments. Other than the analgesic property, kratom has been used as an agent to overcome opioid withdrawal as it contains natural alkaloids, i.e. mitragynine, 7-hydroxymitragynine, and MGM-9, which has agonist affinity on the opioid receptors, including mu (µ) and kappa (κ). The role of neural reward pathways linked to µ-opioid receptors and both dopaminergic and gamma-Aminobutyric acid (GABA)-ergic interneurons that express µ-opioid receptors were deliberated. However, kratom has been reported to be abused together with other illicit substances with high risk of potential addiction. There are also anecdotes of adverse effects and toxicity of kratom, i.e. tremor, fatigue, seizure, and death. Different countries have distinctive regulation and policy on the plantation and use of this plant when most of the countries banned the use of it because of its addiction problems and side effects. The aim of this review is to highlight on the potential use of kratom, unique 'herbs" as a substitution therapy for chronic pain and opioid addiction, based on the neurobiological perspective of pain and the underlying mechanism of actions of drug addiction.
    Matched MeSH terms: Alkaloids/therapeutic use*
  5. Singh D, Narayanan S, Vicknasingam B, Corazza O, Santacroce R, Roman-Urrestarazu A
    Hum Psychopharmacol, 2017 05;32(3).
    PMID: 28544011 DOI: 10.1002/hup.2582
    OBJECTIVE: Kratom (Mitragyna speciosa. Korth) is an indigenous medicinal plant of Southeast Asia. This review paper aims to describe the trends of kratom use in Southeast Asia.

    DESIGN: A literature review search was conducted through ScienceDirect, Scopus, ProMed and Google Scholar. Twenty-five articles illustrating kratom use in humans in Southeast Asia were reviewed.

    RESULTS: Kratom has long been used by rural populations in Southeast Asia as a remedy for common ailments, to fight fatigue from hard manual work, as a drink during social interaction among men, and in village religious functions. Studies based on self-reports suggest that prolonged kratom use does not result in serious health risks or impair social functioning. Two recent trends have also emerged: (a) Kratom is reportedly being used to ease withdrawal from opioid dependence in rural settings; whereas (b) in urban areas, adulterated kratom cocktails are being consumed by younger people to induce euphoria.

    CONCLUSIONS: Legal sanctions appear to have preceded serious scientific investigations into the claimed benefits of ketum. More objective-controlled trials and experiments on humans need to be conducted to validate self-report claims by kratom users in the community.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use*
  6. Prozialeck WC, Avery BA, Boyer EW, Grundmann O, Henningfield JE, Kruegel AC, et al.
    Int J Drug Policy, 2019 08;70:70-77.
    PMID: 31103778 DOI: 10.1016/j.drugpo.2019.05.003
    Kratom (Mitragyna speciosa) is a tree-like plant indigenous to Southeast Asia. Its leaves, and the teas brewed from them have long been used by people in that region to stave off fatigue and to manage pain and opioid withdrawal. Evidence suggests kratom is being increasingly used by people in the United States and Europe for the self-management of opioid withdrawal and treatment of pain. Recent studies have confirmed that kratom and its chemical constituents have potentially useful pharmacological actions. However, there have also been increasing numbers of reports of adverse effects resulting from use of kratom products. In August 2016, the US Drug Enforcement Administration announced plans to classify kratom and its mitragynine constituents as Schedule I Controlled Substances, a move that triggered a massive response from pro-kratom advocates. The debate regarding the risks, and benefits and safety of kratom continues to intensify. Kratom proponents tout kratom as a safer and less addictive alternative to opioids for the management of pain and opioid addiction. The anti-kratom faction argues that kratom, itself, is a dangerous and addictive drug that ought to be banned. Given the widespread use of kratom and the extensive media attention it is receiving, it is important for physicians, scientists and policy makers to be knowledgeable about the subject. The purpose of this commentary is to update readers about recent developments and controversies in this rapidly evolving area. All of the authors are engaged in various aspects of kratom research and it is our intention to provide a fair and balanced overview that can form the basis for informed decisions on kratom policy. Our conclusions from these analyses are: (a) User reports and results of preclinical studies in animals strongly suggest that kratom and its main constituent alkaloid, mitragynine may have useful activity in alleviating pain and managing symptoms of opioid withdrawal, even though well-controlled clinical trials have yet to be done. (b) Even though kratom lacks many of the toxicities of classic opioids, there are legitimate concerns about the safety and lack of quality control of purported "kratom" products that are being sold in the US. (c) The issues regarding the safety and efficacy of kratom and its mitragynine constituent can only be resolved by additional research. Classification of the Mitragyna alkaloids as Schedule I controlled substances would substantially impede this important research on kratom.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use
  7. Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, et al.
    Phytomedicine, 2014 Apr 15;21(5):758-65.
    PMID: 24369814 DOI: 10.1016/j.phymed.2013.11.007
    Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.
    Matched MeSH terms: Alkaloids/therapeutic use*
  8. Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, et al.
    Neurosci Biobehav Rev, 2013 Feb;37(2):138-51.
    PMID: 23206666 DOI: 10.1016/j.neubiorev.2012.11.012
    Kratom (or Ketum) is a psychoactive plant preparation used in Southeast Asia. It is derived from the plant Mitragyna speciosa Korth. Kratom as well as its main alkaloid, mitragynine, currently spreads around the world. Thus, addiction potential and adverse health consequences are becoming an important issue for health authorities. Here we reviewed the available evidence and identified future research needs. It was found that mitragynine and M. speciosa preparations are systematically consumed with rather well defined instrumentalization goals, e.g. to enhance tolerance for hard work or as a substitute in the self-treatment of opiate addiction. There is also evidence from experimental animal models supporting analgesic, muscle relaxant, anti-inflammatory as well as strong anorectic effects. In humans, regular consumption may escalate, lead to tolerance and may yield aversive withdrawal effects. Mitragynine and its derivatives actions in the central nervous system involve μ-opioid receptors, neuronal Ca²⁺ channels and descending monoaminergic projections. Altogether, available data currently suggest both, a therapeutic as well as an abuse potential.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use
  9. Thomas A, Rajesh EK, Kumar DS
    Phytother Res, 2016 Mar;30(3):357-66.
    PMID: 26749336 DOI: 10.1002/ptr.5559
    Tinospora crispa is a medicinal plant belonging to the botanical family Menispermiaceae. The plant is widely distributed in Southeast Asia and the northeastern region of India. A related species Tinospora cordifolia is used in Ayurveda for treating a large spectrum of diseases. Traditional healers of Thailand, Malaysia, Guyana, Bangladesh and the southern Indian province of Kerala use this plant in the treatment of diabetes. Many diterpenes, triterpenes, phytosteroids, alkaloids and their glycosides have been isolated from T. crispa. Cell culture and animal studies suggest that the herb stimulates secretion of insulin from β-cells. It also causes dose-dependent and time-dependent enhancement of glucose uptake in muscles. However, in view of the reported hepatotoxicity, this herb may be used with caution. This article reviews the animal studies and human clinical trials carried out using this herb. Areas of future research are also identified.
    Matched MeSH terms: Alkaloids/therapeutic use
  10. Mani V, Ramasamy K, Ahmad A, Parle M, Shah SA, Majeed AB
    Food Chem Toxicol, 2012 Mar;50(3-4):1036-44.
    PMID: 22142688 DOI: 10.1016/j.fct.2011.11.037
    Dementia is a syndrome of gradual onset and continuous decline of higher cognitive functioning. It is a common disorder in older persons and has become more prevalent today. The fresh leaves of Murraya koenigii are often added to various dishes in Asian countries due to the delicious taste and flavor that they impart. These leaves have also been proven to have health benefits. In the present study, the effect of total alkaloidal extract from M. koenigii leaves (MKA) on cognitive functions and brain cholinesterase activity in mice were determined. In vitro β-secretase 1 (BACE1) inhibitory activity was also evaluated. The total alkaloidal extract was administered orally in three doses (10, 20 and 30 mg/kg) for 15 days to different groups of young and aged mice. Elevated plus maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam-, scopolamine-, and ageing-induced amnesia served as the interoceptive behavioral models. MKA (20 and 30 mg/kg, p.o.) showed significant improvement in memory scores of young and aged mice. Furthermore, the same doses of MKA reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.). Interestingly, the brain cholinesterase activity was also reduced significantly by total alkaloidal extract of M. koenigii leaves. The IC50 value of MKA against BACE1 was 1.7 μg/mL. In conclusion, this study indicates MKA to be a useful remedy in the management of Alzheimer's disease and dementia.
    Matched MeSH terms: Alkaloids/therapeutic use*
  11. Kong YR, Tay KC, Su YX, Wong CK, Tan WN, Khaw KY
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573300 DOI: 10.3390/molecules26030728
    Alkaloids are a class of secondary metabolites that can be derived from plants, fungi and marine sponges. They are widely known as a continuous source of medicine for the management of chronic disease including cancer, diabetes and neurodegenerative diseases. For example, galanthamine and huperzine A are alkaloid derivatives currently being used for the symptomatic management of neurodegenerative disease. The etiology of neurodegenerative diseases is polygenic and multifactorial including but not limited to inflammation, oxidative stress and protein aggregation. Therefore, natural-product-based alkaloids with polypharmacology modulation properties are potentially useful for further drug development or, to a lesser extent, as nutraceuticals to manage neurodegeneration. This review aims to discuss and summarise recent developments in relation to naturally derived alkaloids for neurodegenerative diseases.
    Matched MeSH terms: Alkaloids/therapeutic use
  12. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Alkaloids/therapeutic use
  13. Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS
    Phytochemistry, 2011 Dec;72(17):2212-8.
    PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001
    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
    Matched MeSH terms: Indole Alkaloids/therapeutic use*
  14. Khor BS, Jamil MF, Adenan MI, Shu-Chien AC
    PLoS One, 2011;6(12):e28340.
    PMID: 22205946 DOI: 10.1371/journal.pone.0028340
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/therapeutic use
  15. Okechukwu PN, Ekeuku SO, Chan HK, Eluri K, Froemming GRA
    Curr Pharm Biotechnol, 2021;22(2):288-298.
    PMID: 32744968 DOI: 10.2174/1389201021666200730124208
    BACKGROUND: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing β-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage.

    OBJECTIVE: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model.

    METHODS: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification.

    RESULTS: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB.

    CONCLUSION: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.

    Matched MeSH terms: Berberine Alkaloids/therapeutic use*
  16. Alhuthali HM, Bradshaw TD, Lim KH, Kam TS, Seedhouse CH
    BMC Cancer, 2020 Jul 07;20(1):629.
    PMID: 32635894 DOI: 10.1186/s12885-020-07119-2
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

    METHODS: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

    RESULTS: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

    CONCLUSIONS: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.

    Matched MeSH terms: Indole Alkaloids/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links