Aim: CNS infections due to parasites often prove fatal. In part, this is due to inefficacy of drugs to cross the blood-brain barrier. Methods: Here, we tested intranasal and intravenous route and compared adverse effects of Amphotericin B administration, through blood biochemistry, liver, kidney and brain histopathological evidence of toxicities in vivo post-administration. Results: It was observed that intranasal route limits the adverse side effects of Amphotericin B, in contrast to intravenous route. Conclusion: As parasites such as Naegleria fowleri exhibit unequivocal affinity toward the olfactory bulb and frontal lobe in the central nervous system, intranasal administration would directly reach amoebae bypassing the blood-brain barrier selectivity and achieve the minimum inhibitory concentration at the target site.
Thirty six clinical isolates of Cryptococcus neoformans were tested for their susceptibility to 5-fluorocytosine and amphotericin B by the determination of minimum inhibitory concentrations and minimum fungicidal concentrations. 22.2% of the isolates were resistant to 5-fluorocytosine and 36.1% indicated 5-fluorocytosine tolerance. All strains were sensitive to amphotericin B.
Oral delivery of amphotericin B (AmpB) is desirable because it provides a more patient-friendly mode of administration compared to the current delivery approach akin with the marketed AmpB formulations. The goal of the study was to investigate the pharmacokinetics and tissue distribution of orally administered chitosan-coated AmpB-loaded nanostructured lipid carriers (ChiAmpB NLC) administered to Sprague Dawley rats at a dose of 15 mg/kg. Orally administered ChiAmpB NLC resulted in a two-fold increase in the area under the curve (AUC0-∞) compared to the uncoated AmpB NLC and marketed Amphotret®. This enhanced bioavailability of AmpB suggests prolonged transit and retention of ChiAmpB NLC within the small intestine through mucoadhesion and subsequent absorption by the lymphatic pathway. The results show that mean absorption and residence times (MAT & MRT) were significantly higher from ChiAmpB NLC compared to the other two formulations, attesting to the mucoadhesive effect. The ChiAmpB NLC presented a lower nephrotic accumulation with preferential deposition in liver and spleen. Thus, the limitations of current marketed IV formulations of AmpB are potentially addressed with the ChiAmpB NLC in addition to utilizing this approach for targeting internal organs in visceral leishmaniasis.
Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the simulated fluids, the particles increased in size due to ingress of the dissolution media into the particles. Simulated gastric emptying revealed that the formulations had mean sizes <350nm and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary ion mass spectrometry analyses indicated that drug loading followed the core-shell model and that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the simulated GI media indicates their suitability for oral delivery.
The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
This study describes the properties of an amphotericin B-containing mucoadhesive nanostructured lipid carrier (NLC), with the intent to maximize uptake within the gastrointestinal tract. We have reported previously that lipid nanoparticles can significantly improve the oral bioavailability of amphotericin B (AmpB). On the other hand, the aggregation state of AmpB within the NLC has been ascribed to some of the side effects resulting from IV administration. In the undissolved state, AmpB (UAmpB) exhibited the safer monomeric conformation in contrast to AmpB in the dissolved state (DAmpB), which was aggregated. Chitosan-coated NLC (ChiAmpB NLC) presented a slightly slower AmpB release profile as compared to the uncoated formulation, achieving 26.1% release in 5 hours. Furthermore, the ChiAmpB NLC formulation appeared to prevent the expulsion of AmpB upon exposure to simulated gastrointestinal pH media, whereby up to 63.9% of AmpB was retained in the NLC compared to 56.1% in the uncoated formulation. The ChiAmpB NLC demonstrated mucoadhesive properties in pH 5.8 and 6.8. Thus, the ChiAmpB NLC formulation is well-primed for pharmacokinetic studies to investigate whether delayed gastrointestinal transit may be exploited to improve the systemic bioavailability of AmpB, whilst simultaneously addressing the side-effect concerns of AmpB.
Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P
Rhino-orbital-cerebral mucormycosis (ROCM) is an uncommon but fatal fungal infection. We report a rare case of unilateral ROCM with ipsilateral central retinal artery occlusion and contralateral choroiditis, which later progressed to endogenous fungal endophthalmitis. The patient was successfully treated with sinuses debridement, systemic liposomal amphotericin B, and intravitreal amphotericin B. The endophthalmitis completely resolved with good vision, but the ROCM eye remained blind due to central retinal artery occlusion.
Candida pseudohaemulonii is phylogenetically close to the C. haemulonii complex and exhibits resistance to amphotericin B and azole agents. We report here the draft genome sequence of C. pseudohaemulonii UZ153_17 isolated from the blood culture of a neutropenic patient. The draft genome is 3,532,003,666 bp in length, with 579,838 reads, 130 contigs, and a G+C content of 47.15%.
Micafungin was reported to be non-inferior to liposomal amphotericin B (LAmB) in treating patients with candidaemia and invasive candidiasis (IC). The current study aimed to evaluate the economic impact of using micafungin versus LAmB for treatment of candidaemia and IC in Turkey. A decision analytic model, which depicted economic consequences upon administration of micafungin or LAmB for treating patients with candidaemia and IC in the Turkish hospitals, was constructed. Patients were switched to an alternative antifungal agent if initial treatment failed due to mycological persistence. All patients were followed up until treatment success or death. Outcome probabilities were obtained from published literature and cost inputs were derived from the latest Turkish resources. Expert panels were used to estimate data that were not available in the literature. Cost per patient treated for each intervention was then calculated. Sensitivity analyses including Monte Carlo simulation were performed. For treatment of candidaemia and IC, micafungin (€4809) was associated with higher total cost than LAmB (€4467), with an additional cost of €341 per treated patient. Cost of initial antifungal treatment was the major cost driver for both comparators. The model outcome was robust over a wide variation in input variables except for drug acquisition cost and duration of initial antifungal treatment with micafungin or LAmB. LAmB is cost-saving relative to micafungin for the treatment of candidaemia and IC from the Turkish hospital perspective, with variation in drug acquisition cost of the critical factor affecting the model outcome.
An amphotericin B-containing (AmB) solid lipid nanoparticulate drug delivery system intended for oral administration, comprised of bee's wax and theobroma oil as lipid components was formulated with the aim to ascertain the location of AmB within the lipid matrix: (a) a homogenous matrix; (b) a drug-enriched shell; or (c) a drug enriched core. Both the drug-loaded and drug-free nanoparticles were spherical with AmB contributing to an increase in both the z-average diameter (169 ± 1 to 222 ± 2 nm) and zeta potential (40.8 ± 0.9 to 50.3 ± 1.0 mV) of the nanoparticles. A maximum encapsulation efficiency of 21.4% ± 3.0%, corresponding to 10.7 ± 0.4 mg encapsulated AmB within the lipid matrix was observed. Surface analysis and electron microscopic imaging indicated that AmB was dispersed uniformly within the lipid matrix (option (a) above) and, therefore, this is the most suitable of the three models with regard to modeling the propensity for uptake by epithelia and release of AmB in lymph.
Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
Fungal endophthalmitis is rare but may complicate glaucoma drainage device surgery. Management is challenging as the symptoms and signs may be subtle at initial presentation and the visual prognosis is usually poor due to its resistant nature to treatment. At present there is lesser experience with intravitreal injection of voriconazole as compared to Amphotericin B. We present a case of successfully treated Aspergillus endophthalmitis following Baerveldt glaucoma drainage device implantation with intravitreal and topical voriconazole.
Cryptococcosis is a life-threatening mycosis typically seen in immunocompromised patients. Pulmonary cryptococcosis generally presents as multiple or solitary nodular opacities. Cryptococcal infection presenting as a destructing cavernoma (cryptococcoma) without diffuse infiltration of the lung is an extremely rare presentation, even in immunocompromised patients. This report presents a healthy, HIV negative, immunocompetent patient who presented with a large solitary lung mass provisionally diagnosed as a lung malignancy on radiological imaging that proved to be a large cryptococcoma after biopsy. The patient was treated with liposomal Amphotericin B and fluconazole, and the lesion showed regression on serial imaging. This case report thus highlights an unconventional presentation of pulmonary cryptococcosis in an immunocompetent individual.
We aimed to investigate the effects that natural lipids, theobroma oil (TO) and beeswax (BW), might have on the physical properties of formulated nanoparticles and also the degree of expulsion of encapsulated amphotericin B (AmB) from the nanoparticles during storage. Lecithin and sodium cholate were used as emulsifiers whilst oleic acid (OA) was used to study the influence of the state of orderliness/disorderliness within the matrices of the nanoparticles on the degree of AmB expulsion during storage. BW was found to effect larger z-average diameter compared with TO. Lecithin was found to augment the stability of the nanoparticles imparted by BW and TO during storage. An encapsulation efficiency (%EE) of 59% was recorded when TO was the sole lipid as against 42% from BW. In combination however, the %EE dropped to 39%. When used as sole lipid, TO or BW formed nanoparticles with comparatively higher enthalpies, 21.1 and 23.3 J/g respectively, which subsequently caused significantly higher degree of AmB expulsion, 81 and 83% respectively, whilst only 11.8% was expelled from a binary TO/BW mixture. A tertiary TO/BW/OA mixture registered the lowest enthalpy at 8.07 J/g and expelled 12.6% of AmB but encapsulated only 22% of AmB. In conclusion, nanoparticles made from equal concentrations of TO and BW produced the most desirable properties and worthy of further investigations.
Sporotrichosis is a subacute or chronic fungal infection caused by the ubiquitous fungus Sporothrix schenckii. Disseminated cutaneous sporotrichosis is an uncommon entity and is usually present in the immunosuppressed. Here, a case of disseminated cutaneous sporotrichosis in an immunocompetent patient is reported. This 70-year-old healthy woman presented with multiple painful ulcerated nodules on her face and upper and lower extremities of 6-month duration, associated with low-grade fever, night sweats, loss of appetite, and loss of weight. Histopathological examination of the skin biopsy revealed epidermal hyperplasia and granulomatous inflammation in the dermis, with budding yeast. Fungal culture identified S. schenckii. She had total resolution of the lesions after 2 weeks of intravenous amphotericin B and 8 months of oral itraconazole. All investigations for underlying immunosuppression and internal organ involvement were negative. This case reiterates that disseminated cutaneous sporotrichosis, although common in the immunosuppressed, can also be seen in immunocompetent patients.
Matched MeSH terms: Amphotericin B/therapeutic use
We report a case of Cryptococcus humicolus meningitis complicated by communicating hydrocephalus in an apparently immunocompetent 49-year-old psychiatric patient from a nursing home. He presented with a history of poor oral intake, weight loss, headache, vomiting, blurred vision, frequent falls and unsteady gait for the previous three months. He had a history of chronic cough, productive of whitish sputum for the previous month but no hemoptysis. Cerebrospinal fluid culture was positive for Cryptococcus humicolus. He was treated with intravenous amphotericin B and oral fluconazole and had clinical and microbiological improvement after three weeks of treatment. Unfortunately, the patient acquired nosocomial methicillin-resistant Staphylococcus aureus infection and died due to overwhelming sepsis.
Matched MeSH terms: Amphotericin B/therapeutic use
Cryptococcal infection uncommonly presents with pulmonary manifestations and even more rarely so as massive bilateral effusions. Pleural involvement is usually associated with underlying pulmonary parenchymal lesions and is unusual while on antifungal therapy. We report a patient with cryptococcal meningitis who, while on intravenous 5-flucytosine and amphotericin B, developed life-threatening bilateral massive pleural effusions with evidence of spontaneous resolution, consistent with prior hypothesis of antigenic stimulation as the cause of pleural involvement.
Matched MeSH terms: Amphotericin B/therapeutic use