Displaying publications 1 - 20 of 414 in total

Abstract:
Sort:
  1. Zakaria L
    Plant Dis, 2023 Mar;107(3):603-615.
    PMID: 35819350 DOI: 10.1094/PDIS-02-22-0358-FE
    Basal stem rot of oil palm caused by Ganoderma boninense is the most serious disease of oil palm in Malaysia, Indonesia, and other oil-palm-producing countries. Economic losses caused by the disease can be up to USD500 million a year. For many years, basal stem rot was found to infect older palm trees of more than 25 to 30 years in age. Only in the 1950s, the disease began to appear in much younger palm trees, 10 to 15 years old, and, in the last decade or so, palm trees as young as 1 year were infected by the disease. The highest incidence occurs in coastal areas of Southeast Asia but the disease has now infected oil palm in inland areas, mainly oil palm planted in peat soils. Disease incidence is also high in areas previously growing coconut or forest. Basal stem rot infection and spread occur through root-to-root contact, and basidiospores that colonize the roots also play a role. In the early stages of infection by G. boninense, the pathogen behaves as a biotroph and later as a necrotroph, secreting cell-wall-degrading enzymes and triggering host defense responses. Genes, gene products, and metabolic pathways involved in oil palm defense mechanisms against G. boninense have been identified and these metabolites have the potential to be used as markers for early detection of the disease. Integrated disease management used to control basal stem rot includes cultural practices, chemical control, and application of biocontrol agents or fertilizers. Early detection tools have also been developed that could assist in management of basal stem rot infections. Development of resistant or tolerant oil palm is still at an early stage; therefore, the existing integrated disease management practices remain the most appropriate methods for managing basal stem rot of oil palm.
    Matched MeSH terms: Arecaceae*
  2. Ahmed Z, Yusoff MS, N H MK, Abdul Aziz H
    J Air Waste Manag Assoc, 2022 01;72(1):116-130.
    PMID: 33872123 DOI: 10.1080/10962247.2021.1919240
    A massive quantity of Elaeis guineensis (oil palm) trunk biomass, containing a significant amount of natural starch, is available in Malaysia as biowaste because of annual replantation. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environmental sustainability and economy through conversion to bioresources. This study investigated the effectiveness of the bisulfite steeping method for starch synthesis from oil palm trunk (OPT) biowaste. The central composite design (CCD) of Design-Expert software executed an experimental model design, data analysis, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the bisulfite steeping method for starch synthesis. The developed quadratic models for four factors (strength of sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution, and ultrapure water) and one response (%Yield) demonstrated that a significant starch yield (13.54%) is achievable employing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultrapure water respectively. Experimental outcomes were consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15 µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics, while FTIR confirms the presence of hydroxyl, carboxylic, and phenolic groups like other cereal starches.Implications: Malaysia is the 2nd largest palm oil exporter in the world. About 110 million tons of palm oil trunk (OPT) biomass is available annually during replanting activities. Modification of bio-wastes into a beneficial form (only 22% presently) like starch extraction would ensure potential reuse as a natural coagulant for wastewater and leachate treatment, food source, adhesives towards boosting the country's economy by sustainable waste management. The current study achieved better starch yield (13.54%) than previous, from the OPT biomass through the novel bisulfite steeping method. Therefore, this method will ascertain the effective implication of numerous economic activities.
    Matched MeSH terms: Arecaceae*
  3. Abubakar A, Ishak MY
    Environ Sci Pollut Res Int, 2024 Aug;31(38):50036-50055.
    PMID: 39093389 DOI: 10.1007/s11356-024-34535-9
    The increasing global demand for palm oil and its derivatives has led to significant environmental and social concerns, prompting the need for sustainable practices in oil palm production. In recent years, digital technologies have emerged as a potential solution to enhance sustainability in this sector. The objective of this review was to provide insights into the potential benefits and limitations of digital technologies in promoting sustainable practices in the oil palm industry, and to identify key challenges that must be addressed to ensure that digitalization contributes to sustainable development in this sector. To obtain valuable insights on this topic, this review employed a thorough analysis and exploration of relevant literature. Our findings highlight the transformative potential of digital technologies such as precision agriculture, data analytics, blockchain, and robotics to optimize resource utilization, improving efficiency, promoting social welfare, improving supply chain transparency, mitigating environmental impacts, and enhancing sustainability in oil palm production. However, the adoption of these technologies is hindered by several challenges, including high cost, lack of knowledge, and inadequate infrastructure. Our findings emphasize the importance of supportive policies, collaborative efforts, and targeted research to promote technology adoption and ensure equitable benefits across the oil palm industry. Recommendations are provided for industry stakeholders, policymakers, and researchers to leverage digitalization effectively and promote sustainable practices in the oil palm industry, ultimately contributing to global sustainability goals.
    Matched MeSH terms: Arecaceae*
  4. Teo HL, Abdul Wahab R, Zainal-Abidin MH, Mark-Lee WF, Susanti E
    Int J Biol Macromol, 2024 Nov;280(Pt 2):135787.
    PMID: 39304051 DOI: 10.1016/j.ijbiomac.2024.135787
    This study explores an eco-friendly delignification technique for raw oil palm leaves (OPL), highlighting the optimized conditions of choline chloride-lactic acid deep eutectic solvent (DES)-mediated ball milling pretreatment to maximize the co-production yields of highly crystalline cellulose and lignin. Our five-level-four-factor Taguchi design identified the optimal reaction settings for cellulose production (85.83 % yield, 47.28 % crystallinity) as 90-minute milling, 1500 rpm, mill-ball size ratio of 30:10, ball-to-sample mass ratio of 20:1, DES-to-sample mass ratio of 3:1. Conversely, the maximal lignin extraction yield (35.23 %) occurred optimally at 120-minute milling, 600 rpm, mill-ball size ratio of 25:5, ball-to-sample mass ratio of 20:1 and DES-to-sample mass ratio of 9:1. Statistical results showed that milling frequency (p-value ≤ 0.0001) was highly significant in improving cellulose crystallinity and yield, while DES-to-sample mass ratio (p-value ≤ 0.0001) was the most impacting on lignin yield. The thermogravimetric method affirmed the elevated cellulose thermal stability, corroborating the enhanced cellulose content (40.14 % to 73.67 %) alongside elevated crystallinity and crystallite size (3.31 to 4.72 nm) shown by X-ray diffractograms. The increased surface roughness seen in micrographs mirrored the above-said post-treatment changes. In short, our optimized one-pot dual-action pretreatment effectively delignified the raw OPL to produce cellulose-rich material with enhanced crystallinity and lignin solidity.
    Matched MeSH terms: Arecaceae/chemistry
  5. Ahmad Rizal NFA, Ibrahim MF, Zakaria MR, Kamal Bahrin E, Abd-Aziz S, Hassan MA
    Molecules, 2018 Apr 02;23(4).
    PMID: 29614823 DOI: 10.3390/molecules23040811
    The combination of superheated steam (SHS) with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.
    Matched MeSH terms: Arecaceae/metabolism*
  6. Yoo HM, Park SW, Seo YC, Kim KH
    J Environ Manage, 2019 Mar 15;234:1-7.
    PMID: 30599325 DOI: 10.1016/j.jenvman.2018.11.035
    Palm kernel shells (PKS), empty fruit bunches (EFB), and trunks are by-products of the palm oil industry and form approximately 50 wt % of fresh fruit bunch (FFB). In particular, EFB accounts for approximately 20 wt % of FFB. Although large amounts of EFB are generated from palm oil mills every year in Indonesia and Malaysia, EFB is treated as waste because commercial technologies for thermo-chemical conversion of EFB into renewable energy are still under development. A robust conversion method can transform EFB into an appealing renewable energy source. In order to secure this renewable energy source, Korea can import EFB as biomass. This paper investigates literature on the status of utilization of EFB, by-products from palm oil mills in order to identify the best available technological process to use EFB as bio-solid refuse fuels (SRF). Meanwhile, physico-chemical analyses (proximate, elemental, and calorific value analyses), biomass and heavy metal content were measured in order to assess whether EFB would be suitable for use as a bio-SRF, in accordance with the Korean quality standard for SRF. According to the analysis results, EFB showed applicability to use as bio-SRF; main analysis results - moisture (9.63 wt %), ash (5.94 wt %), biomass content (97.82 wt %) and calorific value (3668 kcal kg).
    Matched MeSH terms: Arecaceae*
  7. Teh KC, Foo ML, Ooi CW, Leng Chew IM
    Chemosphere, 2021 Mar;267:129277.
    PMID: 33385850 DOI: 10.1016/j.chemosphere.2020.129277
    Cellulose nanocrystals (CNC) have received great research attention since the last few decades due to their extraordinary properties and wide range of applications. In this study, a sustainable and cost-effective method for the synthesis of lignin-containing cellulose nanocrystals (LCNC) from oil palm empty fruit bunch (EFB) is presented. This method is able to retain the lignin in EFB and manifest the properties of lignin. The proposed synthesis process is simpler than the conventional method of producing lignin-coated CNC by first removing the lignin to synthesize CNC followed by the re-coating of lignin on the structure. The samples of LCNC were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and water contact angle analysis. In addition, by altering the acid concentration during acid hydrolysis process (53% - 60% H2SO4), both surface hydrophobicity (66.0° - 75.1°) and length of LCNC (467 nm-177 nm) can be altered wherein a higher concentration of acid resulted in a greater contact angle and a shorter length of LCNC. Cost and energy analysis deduced that the proposed synthesis method saved about 62% of the total material cost and 80% less energy as compared to the synthesis of lignin-coated CNC.
    Matched MeSH terms: Arecaceae*
  8. Mohd Hilmi Tan MIS, Jamlos MF, Omar AF, Dzaharudin F, Chalermwisutkul S, Akkaraekthalin P
    Sensors (Basel), 2021 Apr 27;21(9).
    PMID: 33925576 DOI: 10.3390/s21093052
    Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.
    Matched MeSH terms: Arecaceae*
  9. Pilotti CA, Killah G, Rama D, Gorea EA, Mudge AM
    Mycologia, 2021 03 03;113(3):574-585.
    PMID: 33656969 DOI: 10.1080/00275514.2020.1858687
    Morphological studies suggest that the major pathogen causing basal stem rot of oil palm in Papua New Guinea and Solomon Islands is Ganoderma boninense. This study presents the first evidence for conspecificity of G. boninense from four countries where basal stem rot is prevalent. Seventy-three dikaryotic isolates of Ganoderma boninense from Indonesia, Malaysia, Papua New Guinea, and Solomon Islands were studied via mating tests, analyses of nuc internal transcribed spacer ITS1-5.8S-ITS2 sequences, and microsatellite genotyping. Sequence similarity in the ITS1-5.8S-ITS2 region was >99%, and all exotic isolates successfully mated with Papua New Guinea tester strains. Transfer of nuclei during mating was also confirmed via microsatellite markers for the first time in this species. Four microsatellite primers were used to generate evidence for 33 alleles in the four populations. All isolates studied had unique genetic fingerprints but alleles were also shared, suggesting gene flow. Heterozygosities were lower than expected in Indonesian and Papua New Guinea populations, consistent with the possibility of localized inbreeding.
    Matched MeSH terms: Arecaceae*
  10. Paterson RRM
    J Environ Manage, 2021 Dec 15;300:113785.
    PMID: 34562818 DOI: 10.1016/j.jenvman.2021.113785
    Palms are iconic plants. Oil palms are very important economically and originate in Africa where they can act as a model for palms in general. The effect of future climate on the growth of oil palm will be very detrimental. Latitudinal migration of tropical crops to climate refuges may be impossible, and longitudinal migration has only been confirmed for oil palm, of all the tropical crops. The previous method to determine the longitudinal trend for oil palm used the longitudes of various countries in Africa and plotted these against the percentage suitable climate for growing oil palms in each country. An increasing longitudinal trend was observed from west to east. However, the longitudes of the countries were randomly distributed which may have introduced bias and the procedure was time consuming. The present report presents an optimised and systematic procedure that divided the regions, as presented on a map derived from a CLIMEX model, into ten equal sectors and the percentage suitable climates for growing oil palm were determined for each sector. This approach was quicker, systematic and straight forward and will be useful for management of oil palm plantations under climate change. The method confirmed and validated the trends reported in the original method although the suitability values were often lower and there was less spread of values around the trend. The values for the CSIRO MK3.0 and MIROC H models demonstrated considerable similarities to each other, contributing to validation of the method. The procedure of dividing maps equally into sectors derived from models, could be used for other crops, regions, or systems more generally, where the alternative may be a more superficial visual examination of the maps. Methods are required to mitigate the effects of climate change and stakeholders need to contribute more actively to the current climate debate with tangible actions.
    Matched MeSH terms: Arecaceae*
  11. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2018 May;255:189-197.
    PMID: 29414166 DOI: 10.1016/j.biortech.2018.01.132
    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment.
    Matched MeSH terms: Arecaceae*
  12. Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM
    Carbohydr Polym, 2017 Apr 15;162:115-120.
    PMID: 28224888 DOI: 10.1016/j.carbpol.2017.01.035
    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP.
    Matched MeSH terms: Arecaceae/chemistry*
  13. Thompson-Morrison H, Ariantiningsih F, Arief SM, Gaw S, Robinson B
    Sci Rep, 2024 Jan 22;14(1):1836.
    PMID: 38246913 DOI: 10.1038/s41598-023-50492-8
    The production of oil palm (Elaeis guineensis) in Southeast Asia is vital to the economies of Indonesia and Malaysia. Both fertilisers and pesticides used in palm production can contain elevated concentrations of Trace Elements (TEs) which may accumulate in soils and leaf tissues of plants. We hypothesised that leaves from oil palms may be deficient in essential elements, while containing elevated concentrations of non-essential TEs commonly found in agrichemicals. Samples of plant materials (leaves and fruitlets) were collected from active and former plantations in Sumatra, Indonesia, and analysed for essential and non-essential elements. Indonesian palm oil samples were sourced in New Zealand and their elemental concentrations determined. Leaf materials from both active and abandoned production sites were deficient in N, K, S and Mo, while leaf materials from abandoned sites were deficient in P. These deficiencies may have been a contributing factor to the abandonment of production at these sites. Concentrations of non-essential elements were below or comparable to average plant concentrations and no evidence of contamination was found in plant tissues. Palm oil contained low concentrations of TEs, which did not pose any toxicity risks. However, Na and Al were present in concentrations of 1198 and 159 mg kg-1 respectively, which were higher than have been previously reported. Tropical oil palm production could benefit from the determination of bioaccumulation factors for fertiliser contaminants in E. guineensis, to limit the transfer of contaminants to plants and products if increased fertiliser applications were used to correct nutrient deficiencies.
    Matched MeSH terms: Arecaceae*
  14. Noh A, Rafii MY, Saleh G, Kushairi A, Latif MA
    ScientificWorldJournal, 2012;2012:792601.
    PMID: 22701095 DOI: 10.1100/2012/792601
    The performance of 11 oil palm AVROS (Algemene Vereniging van Rubberplanters ter Oostkust van Sumatra) pisiferas was evaluated based on their 40 dura x pisifera (DxP) progenies tested on inland soils, predominantly of Serdang Series. Fresh fruit bunch (FFB) yield of each pisiferas ranged from 121.93 to 143.9 kg palm⁻¹ yr⁻¹ with trial mean of 131.62 kg palm⁻¹ yr⁻¹. Analysis of variance (ANOVA) showed low genetic variability among pisifera parents for most of the characters indicating uniformity of the pisifera population. This was anticipated as the AVROS pisiferas were derived from small population and were inbred materials. However, some of the pisiferas have shown good general combining ability (GCA) for certain important economic traits. Three pisiferas (P1 (0.174/247), P3 (0.174/498), P11 (0.182/308)) were identified of having good GCA for FFB yield while pisiferas P1 (0.174/247), P10 (0.182/348), and P11 (0.182/308) were good combiners for oil-to-bunch ratio (O/B). The narrow genetic base of these materials was the main obstacle in breeding and population improvement. However, efforts have been made to introgress this material with the vast oil palm germplasm collections of MPOB for rectifying the problem.
    Matched MeSH terms: Arecaceae/genetics*; Arecaceae/growth & development*
  15. Rizal NFAA, Ibrahim MF, Zakaria MR, Abd-Aziz S, Yee PL, Hassan MA
    Molecules, 2018 Jun 07;23(6).
    PMID: 29880760 DOI: 10.3390/molecules23061381
    Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.
    Matched MeSH terms: Arecaceae/metabolism*; Arecaceae/chemistry
  16. Zakry FA, Shamsuddin ZH, Abdul Rahim K, Zawawi Zakaria Z, Abdul Rahim A
    Microbes Environ, 2012;27(3):257-62.
    PMID: 22446306
    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N₂ fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the ¹⁵N isotope dilution method. Eight months after ¹⁵N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower ¹⁵N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N₂ fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field.
    Matched MeSH terms: Arecaceae/metabolism*; Arecaceae/microbiology*
  17. Le VT, Sarpan N, Huynh K, Ooi SE, Napis S, Ho CL, et al.
    Mol Biotechnol, 2011 Jun;48(2):156-64.
    PMID: 21153717 DOI: 10.1007/s12033-010-9356-4
    In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.
    Matched MeSH terms: Arecaceae/embryology*; Arecaceae/genetics; Arecaceae/metabolism*
  18. Lau BYC, Othman A, Ramli US
    Protein J, 2018 12;37(6):473-499.
    PMID: 30367348 DOI: 10.1007/s10930-018-9802-x
    Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
    Matched MeSH terms: Arecaceae/genetics; Arecaceae/metabolism*; Arecaceae/microbiology
  19. Aliteh NA, Misron N, Aris I, Mohd Sidek R, Tashiro K, Wakiwaka H
    Sensors (Basel), 2018 Aug 01;18(8).
    PMID: 30071614 DOI: 10.3390/s18082496
    This paper aims to study a triple flat-type air coil inductive sensor that can identify two maturity stages of oil palm fruits, ripe and unripe, based on the resonance frequency and fruitlet capacitance changes. There are two types of triple structure that have been tested, namely Triple I and II. Triple I is a triple series coil with a fixed number of turns (n = 200) with different length, and Triple II is a coil with fixed length (l = 5 mm) and a different number of turns. The peak comparison between Triple I and II is using the coefficient of variation cv, which is defined as the ratio of the standard deviation to the mean to express the precision and repeatability of data. As the fruit ripens, the resonance frequency peaks from an inductance⁻frequency curve and shifts closer to the peak curve of the air, and the fruitlet capacitance decreases. The coefficient of the variation of the inductive oil palm fruit sensor shows that Triple I is smaller and more consistent in comparison with Triple II, for both resonance frequency and fruitlet capacitance. The development of this sensor proves the capability of an inductive element such as a coil, to be used as a sensor so as to determine the ripeness of the oil palm fresh fruit bunch sample.
    Matched MeSH terms: Arecaceae
  20. Yew MK, Bin Mahmud H, Ang BC, Yew MC
    ScientificWorldJournal, 2014;2014:387647.
    PMID: 24982946 DOI: 10.1155/2014/387647
    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.
    Matched MeSH terms: Arecaceae*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links