DESIGN: Cross-sectional analysis.
SETTING: The Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study.
PARTICIPANTS: Fifteen-year-old secondary school children who have given consent and who participated in the MyHeART study in 2014.
PRIMARY OUTCOME MEASURE: Muscle strength was measured in relation to dietary intake (energy and macronutrients) and physical activity by using a hand grip dynamometer.
RESULTS: Among the 1012 participants (395 male; 617 female), the hand grip strength of the males was higher than that of the females (27.08 kg vs 18.63 kg; p<0.001). Also, males were more active (2.43vs2.12; p<0.001) and consumed a higher amount of energy (2047 kcal vs 1738 kcal; p<0.001), carbohydrate (280.71 g vs 229.31 g; p<0.001) and protein (1.46 g/kg body weight (BW) vs 1.35 g/kg BW; p<0.168). After controlling for ethnicity, place of residency and body mass index, there was a positive relationship between hand grip strength and the intake of energy (r=0.14; p=0.006), carbohydrate (r=0.153; p=0.002) and fat (r=0.124; p=0.014) and the physical activity score (r=0.170; p=0.001) and a negative relationship between hand grip strength and the intake of protein (r=-0.134; p=0.008), for males. However, this was not observed among females.
CONCLUSIONS: Energy, carbohydrate and fat intakes and physical activity score were positively correlated with hand grip strength while protein intake was negatively correlated with hand grip strength in males but not in females.
METHODS: In a double blind, randomised crossover design, 12 well-trained male runners completed 4 running time to exhaustion (TTE) trials at a speed equivalent to 70% of VO2peak in a thermoneutral condition. Throughout each run, participants mouth rinsed and expectorated every 15 min either 25 mL of 6% CHO or a placebo (PLA) solution for 10 s. The four TTEs consisted of two trials in the euhydrated (EU-CHO and EU-PLA) and two trials in the dehydrated (DY-CHO and DY-PLA) state. Prior to each TTE run, participants were dehydrated via exercise and allowed a passive rest period during which they were fed and either rehydrated equivalent to their body mass deficit (i.e., EU trials) or ingested only 50 mL of water (DY trials).
RESULTS: CHO mouth rinsing significantly improved TTE performance in the DY compared to the EU trials (78.2 ± 4.3 vs. 76.9 ± 3.8 min, P = 0.02). The arousal level of the runners was significantly higher in the DY compared to the EU trials (P = 0.02). There was no significant difference among trials in heart rate, plasma glucose and lactate, and psychological measures.
CONCLUSIONS: CHO mouth rinsing enhanced running performance significantly more when participants were dehydrated vs. euhydrated due to the greater sensitivity of oral receptors related to thirst and central mediated activation. These results show that level of dehydration alters the effect of brain perception with presence of CHO.
METHODS: Twelve patients (52 ± 12 years old; five female) with gastroesophageal reflux disease were recruited for the prospective crossover study. Each patient was invited for panendoscope, manometry and 24 h pH monitor. The two formulated liquid meal, test meal A: 500 ml liquid meal (containing 84.8 g carbohydrate) and B: same volume liquid meal (but 178.8 g carbohydrate) were randomized supplied as lunch or dinner. Reflux symptoms were recorded.
RESULTS: There are significant statistic differences in more Johnson-DeMeester score (p = 0.019), total reflux time (%) (p = 0.028), number of reflux periods (p = 0.026) and longest reflux (p = 0.015) after high carbohydrate diet than low carbohydrate. Total reflux time and number of long reflux periods more than 5 min are significant more after high carbohydrate diet.
CONCLUSION: More acid reflux symptoms are found after high carbohydrate diet. High carbohydrate diet could induce more acid reflux in low esophagus and more reflux symptoms in patients with gastroesophageal reflux disease.
METHODS: Twenty healthy subjects were enrolled in a randomized, 3-way, blinded cross-over trial. The study was registered under ClinicalTrials.gov Identifier no. NCT00123456. At each test day, the subjects received one of three meals comprising 30 g of starch with 5 g of LD or UP or an energy-adjusted control meal containing pea protein. Fasting and postprandial blood glucose, insulin, C-peptide and glucagon-like peptide-1 (GLP-1) concentrations were measured. Subjective appetite sensations were scored using visual analogue scales (VAS).
RESULTS: Linear mixed model (LMM) analysis showed a lower blood glucose, insulin and C-peptide response following the intake of LD and UP, after correction for body weight. Participants weighing ≤ 63 kg had a reduced glucose response compared to control meal between 40 and 90 min both following LD and UP meals. Furthermore, LMM analysis for C-peptide showed a significantly lower response after intake of LD. Compared to the control meal, GLP-1 response was higher after the LD meal, both before and after the body weight adjustment. The VAS scores showed a decreased appetite sensation after intake of the seaweeds. Ad-libitum food intake was not different three hours after the seaweed meals compared to control.
CONCLUSIONS: Concomitant ingestion of brown seaweeds may help improving postprandial glycaemic and appetite control in healthy and normal weight adults, depending on the dose per body weight.
CLINICAL TRIAL REGISTRY NUMBER: Clinicaltrials.gov (ID# NCT02608372).
OBJECTIVE: The purpose of this study was to assess the association between dietary pattern and H. pylori infection among patients aged 18 years and above that went for first esophagogastroduodenoscopy (OGDS) in 2021 at Queen Elizabeth Hospital (QEH), Kota Kinabalu.
METHODS: Dietary intake of positive H. pylori was compared with healthy subjects by using questionnaire adapted from Malaysian Adult Nutrition Survey (MANS) 2014. Using logistic regression models, we evaluated the association between dietary pattern and H. pylori infection risk.
FINDINGS: Our finding identified four dietary patterns, namely "high carbohydrate pattern", "high fiber pattern", "high fat/cholesterol pattern" and "high salt pattern". After adjustment for potential confounders, the highest quartile of "high salt pattern" showed greater odds of H. pylori infection (OR = 1.26; 95% Cl: 1.032-1.459; P = 0.045) than lowest quartile, while highest quartile of "high fiber pattern" demonstrated lower odd of the infection (OR = 0.69; 95% Cl: 0.537-0.829; P = 0.008) than those in lowest quartile. If compared with Recommended Nutrient Intake (RNI) 2017, positive H. pylori consumed high carbohydrates and sodium with insufficient fiber intake.
CONCLUSION: To conclude, "high fiber pattern" lowers the risk of H. pylori infection while "high salt pattern" increases the infection risk. Our study also highlighted the importance of nutrient intake within daily allowances.
DESIGN: A randomized, double-blind, parallel-group, controlled clinical trial.
SETTING: Diabetes clinic of a teaching hospital in Kuala Lumpur, Malaysia.
PARTICIPANTS: A total of 136 participants with type 2 diabetes, aged 30-70 years, were recruited and randomly assigned to receive either probiotics (n = 68) or placebo (n = 68) for 12 weeks.
OUTCOMES: Primary outcomes were glycemic control-related parameters, and secondary outcomes were anthropomorphic variables, lipid profile, blood pressure and high-sensitivity C-reactive protein. The Lactobacillus and Bifidobacterium quantities were measured before and after intervention as an indicator of successful passage of the supplement through gastrointestinal tract.
STATISTICAL ANALYSIS: Intention-to-treat (ITT) analysis was performed on all participants, while per-protocol (PP) analysis was performed on those participants who had successfully completed the trial with good compliance rate.
RESULTS: With respect to primary outcomes, glycated hemoglobin decreased by 0.14 % in the probiotics and increased by 0.02 % in the placebo group in PP analysis (p