Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Cinnamates/metabolism*
  2. Mior Azmai, W. N. S., Abdul Latif, N. S., Md Zain, N.
    MyJurnal
    Tomatoes require appropriate environment to stay sturdy due to earlier decay process. Deterioration causes short shelf life of tomatoes with unfavourable quality, resulting in potential rejection by customers. The objective of the study is to observe the effect of combined coatings of chitosan (Ch) and cinnamic acid (CA) in extending the tomato shelf life. Layer by layer coating of chitosan prior to the cinnamic acid (single coating for each) were applied on fresh graded tomato at two maturity stages; breaker and turning. Twelve days observations at ambient temperature with three-day intervals were recorded. Combined coating of chitosan and cinnamic acid were expected to influence firmness, TSS value, hue angle and weight loss. Results showed that a combined coating of 1.0% Ch + 3 mM CA has significant increament at breaker stage to firmness (8.26 N), hue angle (60.42%) and weight loss value (6.51%) compared to untreated tomato whereas for turning stage, the results showed there were no significant different in all parameters observed except the changes of fruit sweetness (TSS). 1.0% Ch + 4 mM CA show highest TSS value, 3.48% indicating 21% difference than untreated tomato (3.27%). Cinnamic acid helped chitosan in improving coating ability by serving better barrier from pathogen and oxidative gas penetration to prevent earlier spoilage problem.
    Matched MeSH terms: Cinnamates
  3. Ngo YL, Lau CH, Chua LS
    Food Chem Toxicol, 2018 Nov;121:687-700.
    PMID: 30273632 DOI: 10.1016/j.fct.2018.09.064
    Rosmarinic acid is a bioactive phytochemical that can be found in many herbs as ethnomedicines. It possesses remarkable pharmacological activities, and thus leading to its exploration as a therapeutic drug in diabetes treatment recently. This article reviews the extraction and fractionation techniques for plant-based natural rosmarinic acid and its anti-diabetic potential based on literature data published in journals, books, and patents from 1958 to 2017. Factors affecting the performance of rosmarinic acid extraction and fractionation such as operating temperature, time, solvent to sample ratio and eluent system are compiled and discussed in detail. The inhibitory action of rosmarinic acid against sugar digestive enzymes, and protective action towards pancreatic β-cell dysfunction and glucolipotoxicity mediated oxidative stress are also critically reviewed. The optimal parameters are largely dependent on the applied extraction and fractionation techniques, as well as the nature of plant samples. Previous studies have proven the potent role of rosmarinic acid to control plasma glucose level and increase insulin sensitivity in hyperglycemia. Although rosmarinic acid is readily absorbed by human body, its mechanism after consumption is remained unclear. Intensive studies should be well planned to determine the dosage and toxicity level of rosmarinic acid for efficacy and safe consumption.
    Matched MeSH terms: Cinnamates/pharmacology*; Cinnamates/chemistry
  4. Choo WS, Birch EJ, Stewart I
    Lipids, 2009 Sep;44(9):807-15.
    PMID: 19727883 DOI: 10.1007/s11745-009-3334-2
    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.
    Matched MeSH terms: Cinnamates/metabolism; Cinnamates/pharmacology*
  5. Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S
    EXCLI J, 2015;14:385-93.
    PMID: 27004048 DOI: 10.17179/excli2014-697
    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.
    Matched MeSH terms: Cinnamates
  6. Saidan NH, Aisha AF, Hamil MS, Majid AM, Ismail Z
    Pharmacognosy Res, 2015 Jan-Mar;7(1):23-31.
    PMID: 25598631 DOI: 10.4103/0974-8490.147195
    Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3'-hydroxy-5, 6, 7, 4'-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts.
    Matched MeSH terms: Cinnamates
  7. Cheah HL, Lim V, Sandai D
    PLoS One, 2014;9(4):e95951.
    PMID: 24781056 DOI: 10.1371/journal.pone.0095951
    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
    Matched MeSH terms: Cinnamates/pharmacology
  8. Oh HKF, Siow LF, Lim YY
    J Food Biochem, 2019 07;43(7):e12856.
    PMID: 31353691 DOI: 10.1111/jfbc.12856
    Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.
    Matched MeSH terms: Cinnamates/analysis
  9. Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R
    ACS Chem Neurosci, 2019 06 19;10(6):2692-2696.
    PMID: 30970208 DOI: 10.1021/acschemneuro.9b00111
    Primary amoebic meningoencephalitis (PAM), a deadly brain infection, is caused by brain-eating amoeba Naegleria fowleri. The current first line of treatment against PAM is a mixture of amphotericin B, rifampin, and miltefosine. Since, no single effective drug has been developed so far, the mortality rate is above 95%. Moreover, severe adverse side effects are associated with these drugs. Nanotechnology has provided several advances in biomedical applications especially in drug delivery and diagnosis. Herein, for the first time we report antiamoebic properties of cinnamic acid (CA) and gold nanoparticles conjugated with CA (CA-AuNPs) against N. fowleri. CA-AuNPs were successfully synthesized by sodium borohydride reduction of tetrachloroauric acid. Size and morphology were determined by atomic force microscopy (AFM) while the surface plasmon resonance band was analyzed by ultraviolet-visible (UV-vis) spectrophotometry for the characterization of the nanoparticles. Amoebicidal and cytopathogenicity (host cell cytotoxicity) assays revealed that both CA and CA-AuNPs displayed significant anti- N. fowleri properties ( P < 0.05), whereas nanoparticles conjugation further enhanced the anti- N. fowleri effects of CA. This study established a potential drug lead, while CA-AuNPs appear to be promising candidate for drug discovery against PAM.
    Matched MeSH terms: Cinnamates/pharmacology*
  10. Cha TS, Chen CF, Yee W, Aziz A, Loh SH
    J Microbiol Methods, 2011 Mar;84(3):430-4.
    PMID: 21256888 DOI: 10.1016/j.mimet.2011.01.005
    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.
    Matched MeSH terms: Cinnamates/metabolism*
  11. Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Feb 24;51(1):352.
    PMID: 38400866 DOI: 10.1007/s11033-024-09289-9
    BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.

    METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.

    RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.

    CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.

    Matched MeSH terms: Cinnamates*
  12. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
    Matched MeSH terms: Cinnamates/chemistry*
  13. Ghasemzadeh A, Jaafar HZ
    PMID: 24289290 DOI: 10.1186/1472-6882-13-341
    Phytochemicals and antioxidants from plant sources are of increasing interest to consumers because of their roles in the maintenance of human health. Most of the secondary metabolites of herbs are used in a number of pharmaceutical products.
    Matched MeSH terms: Cinnamates/pharmacology*; Cinnamates/chemistry
  14. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Cinnamates/toxicity; Cinnamates/chemistry
  15. Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322226 DOI: 10.3390/molecules21060682
    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.
    Matched MeSH terms: Cinnamates/administration & dosage; Cinnamates/chemistry
  16. Kim RP, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, et al.
    Molecules, 2012 Dec 21;18(1):128-39.
    PMID: 23344192 DOI: 10.3390/molecules18010128
    Eleven compounds:goniomicin A (1), goniomicin B (2), goniomicin C (3), goniomicin D (4), tapisoidin (5), goniothalamin (6), 9-deoxygoniopypyrone (7), pterodondiol (8), liriodenine (9), benzamide (10) and cinnamic acid (11), were isolated from the stem bark of Goniothalamus tapisoides. All compounds were identified by spectroscopic analysis and, for known compounds, by comparison with published data. Goniothalamin (6) exhibited mild cytotoxic activity towards a colon cancer cell line (HT-29), with an IC(50)value of 64.17 ± 5.60 µM. Goniomicin B (2) give the highest antioxidant activity in the DPPH assay among all compounds tested, with an IC(50) of 0.207 µM.
    Matched MeSH terms: Cinnamates/isolation & purification; Cinnamates/pharmacology
  17. Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH
    Saudi Pharm J, 2021 Feb;29(2):143-165.
    PMID: 33679177 DOI: 10.1016/j.jsps.2020.12.016
    Medicinal plants have gained much interest in the prevention and treatment of common human disease such as cold and fever, hypertension and postpartum. Bioactive compounds from medicinal plants were synthesised using effective extraction methods which have important roles in the pharmaceutical product development. Orthosiphon aristatus (OA), Eurycoma longifolia (EL) and Andrographis paniculata (AP) are among popular medicinal herbs in Southeast Asia. The major compounds for these medicinal plants are polar bioactive compounds (rosmarinic acid, eurycomanone and andrographolide) which have multiple benefits to human health. The bioactive compounds are used as a drug to function against a variety of diseases with the support of scientific evidence. This paper was intended to prepare a complete review about the extraction techniques (e.g. OA, EL and AP) of these medicinal plants based on existing studies and scientific works. Suitable solvents and techniques to obtain their major bioactive compounds and their therapeutic potentials were discussed.
    Matched MeSH terms: Cinnamates
  18. Akkbik M, Assim ZB, Ahmad FB
    Int J Anal Chem, 2011;2011:858153.
    PMID: 21760792 DOI: 10.1155/2011/858153
    An HPLC method with ultraviolet-visible spectrophotometry detection has been optimized and validated for the simultaneous determination of phenolic compounds, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as antioxidants, and octyl methyl cinnamate (OMC) as UVB-filter in several personal care products. The dynamic range was between 1 to 250 mg/L with relative standard deviation less than 0.25% (n = 4). Limits of detection for BHA, BHT, and OMC were 0.196, 0.170, and 0.478 mg/L, respectively. While limits of quantification for BHA, BHT, and OMC were 0.593, 0.515, and 1.448 mg/L, respectively. The recovery for BHA, BHT, and OMC was ranged from 92.1-105.9%, 83.2-108.9%, and 87.3-103.7%, respectively. The concentration ranges of BHA, BHT, and OMC in 12 commercial personal care samples were 0.13-4.85, 0.16-2.30, and 0.12-65.5 mg/g, respectively. The concentrations of phenolic compounds in these personal care samples were below than maximum allowable concentration in personal care formulation, that is, 0.0004-10 mg/g, 0.002-5 mg/g, and up to 100 mg/g for BHA, BHT, and OMC, respectively.
    Matched MeSH terms: Cinnamates
  19. Manali Haniti, M.Z., Norazrina, A., Chan, K.M.
    Medicine & Health, 2018;13(2):3-19.
    MyJurnal
    Neurodegenerative diseases commonly affect elderly population and are characterised by progressive neuronal loss. Oxidative stress is highly associated with neurodegeneration. The targeted herbal plant in this review, Ocimum basilicum (O. basilicum), is typically used in Indochina and Italian cuisine. Pharmacological studies on O. basilicum have demonstrated potent antioxidant activities with some reports of neuroprotective actions. This brief review highlights the potential neuroprotective roles of O. basilicum by discussing previously documented antioxidative actions of the plant extract, essential oils and its phytochemical compounds on the nervous system based on in vitro and in vivo studies. Accumulating evidence on the neuroprotective action of O. basilicum points to a notion that neuroprotection is made possible by way of its antioxidant properties and largely due to the presence of polyphenol compounds such as rosmarinic acid which has been identified as the major constituent. Although the mechanisms of O. basilicum antioxidant action have been proposed, further studies are required for better understanding of its antioxidant action leading to neuroprotective roles. It is also possible that the antioxidant actions of O. basilicum are mediated through synergism of a mixture of various naturally-occurring bioactive compounds in the plant, as is with many other plant-based food supplements, to produce the putative effects instead of a single bioactive compound from the plant. Therefore, specific targeting of neuroprotection by means of antioxidant actions warrants further preclinical and clinical studies investigating the therapeutic potentials of O. basilicum particularly in view of the prevention of neurodegenerative processes.
    Matched MeSH terms: Cinnamates
  20. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
    Matched MeSH terms: Cinnamates/isolation & purification; Cinnamates/pharmacology; Cinnamates/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links