Displaying all 19 publications

  1. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:500-508.
    PMID: 26652401 DOI: 10.1016/j.msec.2015.10.055
    The present study examines the synthesis of Co3O4 ultra-nanosheets (Co3O4 UNSs) and Co3O4 ultra-nanosheet-Ni(OH)2 (Co3O4 UNS-Ni(OH)2) via solvothermal process and their application as non-enzymatic electrochemical sensors for glucose detection. X-ray diffraction and transmission electron microscopy results confirmed the Co3O4 UNS deposition on Ni(OH)2 surface. The presence of Co3O4 UNSs on Ni (OH) 2 surface improved the sensitivity of glucose detection, from the increase of glucose oxidation peak current at the Co3O4 UNS-Ni(OH)2/glassy carbon electrode (current density: 2000μA·cm(-2)), compared to the Co3O4 UNSs. These results confirmed that Ni(OH)2 on glassy carbon electrode is a sensitive material for glucose detection, moreover the Co3O4 UNSs can increase the interaction and detection of glucose due to their high surface area. The estimated limit of detection (S/N=3) and limit of quantification (S/N=10) of the linear segment (5-40μM) are 1.08μM and 3.60μM respectively. The reproducibility experiments confirmed the feasibility of Co3O4 UNS-Ni(OH)2 for the quantitative detection of certain concentration ranges of glucose.
    Matched MeSH terms: Cobalt/chemistry*
  2. Kianfar AH, Mahmood WA, Dinari M, Azarian MH, Khafri FZ
    PMID: 24637279 DOI: 10.1016/j.saa.2014.02.089
    The [Co(Me(2)Salen)(PBu(3))(OH(2))]BF4 and [Co(Me(2)Salen)(PPh(3))(Solv)]BF(4), complexes were synthesized and characterized by FT-IR, UV-Vis, (1)H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) and [Co(Me(2)Salen)(PPh(3))(EtOH)]BF(4) hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me(2)Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.
    Matched MeSH terms: Cobalt/chemistry*
  3. Wen Min S, Hasnat MA, Rahim AA, Mohamed N
    Chemosphere, 2013 Jan;90(2):674-82.
    PMID: 23063484 DOI: 10.1016/j.chemosphere.2012.09.048
    A series of experiments were carried out to determine the best medium for the recovery of cobalt by means of an electrogenerative system. Use of the electrogenerative system with a chloride medium had shown promising performance with the highest free energy of -389.8 kJ mol(-1) compared to that with sulphate and nitrate media. Subsequently, the influence of catholyte concentrations on cobalt recovery using the electrogenerative process was carried out by varying the initial cobalt concentration and sodium chloride concentration. The results showed that almost 100% recovery was attained within 1-4 h of the recovery process. Influence of pH was investigated where the electrogenerative system performed best between pH 5.0 and 7.0. Maximum cell performance of 83% with 99% cobalt removal was obtained at 90 min when 100 mg L(-1) of Co(2+) in 0.5 M NaCl was taken as catholyte solution. The values of ΔH(o) and ΔS(o) of the process were evaluated as 33.41 kJ mol(-1) and 0.13 kJ mol(-1), respectively.
    Matched MeSH terms: Cobalt/chemistry*
  4. Rahman NA, Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9749-54.
    PMID: 21855332 DOI: 10.1016/j.biortech.2011.07.023
    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.
    Matched MeSH terms: Cobalt/chemistry*
  5. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Cobalt/chemistry*
  6. Yusof NA, Ahmad M
    PMID: 17531526
    A flow-through optical fibre chemical sensor for the determination of Co(II) at trace level using immobilised 2-(4-pyridylazo)resorcinol (PAR) as the reagent phase is proposed. PAR is physically adsorbed onto XAD-7. This method provided a great sensitivity and simplicity with wide linear response range from 1x10(-2) to 1x10(3)ppm and detection limit of 20ppb. This method also showed a reproducible result with relative standard deviation (R.S.D.) of 1.78% and response time of approximately 5min. The response towards Co(II) was also reversible using acidified KCl as the regenerating solution. Interference studies showed that Cr(III) significantly interfered during the determination. Excellent agreement with reference to inductively coupled plasma optical emission spectroscopy (ICPOES) method was achieved when the developed sensor was applied for determination of Co(II) in aqueous samples.
    Matched MeSH terms: Cobalt/chemistry*
  7. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Cobalt/chemistry*
  8. Kumar R, Singh L, Zularisam AW, Hai FI
    Bioresour Technol, 2016 Nov;220:537-542.
    PMID: 27614156 DOI: 10.1016/j.biortech.2016.09.003
    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.
    Matched MeSH terms: Cobalt/chemistry*
  9. Fan MS, Abdullah AZ, Bhatia S
    ChemSusChem, 2011 Nov 18;4(11):1643-53.
    PMID: 22191096
    A series of bimetallic catalysts containing nickel supported over MgO-ZrO2 were tested for activity in the dry reforming of carbon dioxide. A nickel-cobalt bimetallic catalyst gave the best performance in terms of conversion and coke resistance from a range of Ni-X bimetallic catalysts, X=Ca, K, Ba, La, and Ce. The nitrogen-adsorption and hydrogen-chemisorption studies showed the Ni-Co bimetallic supported catalyst to have good surface area with high metal dispersion. This contributed to the high catalytic activity, in terms of conversion activity and stability of the catalyst, at an equimolar methane/carbon dioxide feed ratio. The kinetics of methane dry reforming are studied in a fixed-bed reactor over an Ni-Co bimetallic catalyst in the temperature range 700-800 °C by varying the partial pressures of CH4 and CO2. The experimental data were analyzed based on the proposed reaction mechanism using the Langmuir-Hinshelwood kinetic model. The activation energies for methane and carbon dioxide consumption were estimated at 52.9 and 48.1 kJ mol(-1), respectively. The lower value of CO2 activation energy compared to the activation energy of CH4 indicated a higher reaction rate of CO2, which owes to the strong basicity of nanocrystalline support, MgO-ZrO2.
    Matched MeSH terms: Cobalt/chemistry*
  10. Ehsan MA, Naeem R, Khaledi H, Sohail M, Hakeem Saeed A, Mazhar M
    Dalton Trans, 2016 Jun 21;45(25):10222-32.
    PMID: 27230711 DOI: 10.1039/c6dt01016d
    Cobalt titanate-titania composite oxide films have been grown on FTO-coated glass substrates using a single-source heterometallic complex [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF () which was obtained in quantitative yield from the reaction of diacetatocobalt(ii) tetrahydrate, tetraisopropoxytitanium(iv), and trifluoroacetic acid from a tetrahydrofuran solution. Physicochemical investigations of complex have been carried out by melting point, FT-IR, thermogravimetric and single-crystal X-ray diffraction analyses. CoTiO3-TiO2 films composed of spherical objects of various sizes have been grown from by aerosol-assisted chemical vapor deposition at different temperatures of 500, 550 and 600 °C. Thin films characterized by XRD, Raman and X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis have been explored for electrochemical detection of dopamine (DA). The cyclic voltammetry with the CoTiO3-TiO2 electrode showed a DA oxidation peak at +0.215 V while linear sweep voltammetry displayed a detection limit (LoD) of 0.083 μM and a linear concentration range of 20-300 μM for DA. Thus, the CoTiO3-TiO2 electrode is a potential candidate for the sensitive and selective detection of DA.
    Matched MeSH terms: Cobalt/chemistry*
  11. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Cobalt/chemistry*
  12. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Cobalt/chemistry*
  13. Shreaz S, Shiekh RA, Raja V, Wani WA, Behbehani JM
    Chem Biol Interact, 2016 Mar 05;247:64-74.
    PMID: 26806515 DOI: 10.1016/j.cbi.2016.01.015
    In this study, we have used aldehyde function of cinnamaldehyde to synthesize N, N'-Bis (cinnamaldehyde) ethylenediimine [C20H20N2] and Co(II) complex of the type [Co(C40H40N4)Cl2]. The structures of the synthesized compounds were determined on the basis of physiochemical analysis and spectroscopic data ((1)H NMR, FTIR, UV-visible and mass spectra) along with molar conductivity measurements. Anticandidal activity of cinnamaldehyde its ligand [L] and Co(II) complex was investigated by determining MIC80, time-kill kinetics, disc diffusion assay and ergosterol extraction and estimation assay. Ligand [L] and Co(II) complex are found to be 4.55 and 21.0 folds more efficient than cinnamaldehyde in a liquid medium. MIC80 of Co(II) complex correlated well with ergosterol inhibition suggesting ergosterol biosynthesis to be the primary site of action. In comparison to fluconazole, the test compounds showed limited toxicity against H9c2 rat cardiac myoblasts. In confocal microscopy propidium iodide (PI) penetrates the yeast cells when treated with MIC of metal complex, indicating a disruption of cell membrane that results in imbibition of dye. TEM analysis of metal complex treated cells exhibited notable alterations or damage to the cell membrane and the cell wall. The structural disorganization within the cell cytoplasm was noted. It was concluded that fungicidal activity of Co(II) complex originated from loss of membrane integrity and a decrease in ergosterol content is only one consequence of this.
    Matched MeSH terms: Cobalt/chemistry
  14. Jaganathan SK, Mani MP
    An Acad Bras Cienc, 2019 Jul 29;91(3):e20180237.
    PMID: 31365648 DOI: 10.1590/0001-3765201920180237
    The aim of this study was to develop polyurethane (PU) wound dressing incorporated with cobalt nitrate using electrospinning technique. The morphology analysis revealed that the developed composites exhibited reduced fiber and pore diameter than the pristine PU. The electrospun membranes exhibited average porosity in the range of 67% - 71%. Energy-dispersive X-ray spectra (EDS) showed the presence of cobalt in the PU matrix. The interaction of cobalt nitrate with PU matrix was evident in Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The contact angle results indicated the improved wettability of the prepared PU/cobalt nitrate composites (82° ± 2) than the pure PU (100° ± 1). The incorporation of cobalt nitrate into the PU matrix enhanced the surface roughness and mechanical strength as evident in the atomic force microscopy (AFM) and tensile test analysis. The blood compatibility assays revealed the anticoagulant nature of the prepared composites by displaying prolonged blood clotting time than the PU control. Further, the developed composite exhibited less toxicity nature as revealed in the hemolysis and cytotoxicity studies. It was observed that the PU wound dressing added with cobalt nitrate fibers exhibited enhanced physicochemical, better blood compatibility parameters and enhanced fibroblast proliferation rates which may serve as a potential candidate for wound dressings.
    Matched MeSH terms: Cobalt/chemistry
  15. Seng HL, Ong HK, Rahman RN, Yamin BM, Tiekink ER, Tan KW, et al.
    J Inorg Biochem, 2008 Nov;102(11):1997-2011.
    PMID: 18778856 DOI: 10.1016/j.jinorgbio.2008.07.015
    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
    Matched MeSH terms: Cobalt/chemistry
  16. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Cobalt/chemistry
  17. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Cobalt/chemistry
  18. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Cobalt/chemistry*
  19. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: Cobalt/chemistry
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links