Displaying publications 1 - 20 of 132 in total

  1. Mussa ZH, Al-Qaim FF
    Environ Sci Pollut Res Int, 2023 Apr;30(17):50457-50470.
    PMID: 36795212 DOI: 10.1007/s11356-023-25907-8
    10,11-Dihydro-10-hydroxy carbamazepine has been degraded in deionized water and wastewater samples using an electrochemical process. The anode used in the treatment process was graphite-PVC. Different factors such as initial concentration, NaCl amount, type of matrix, applied voltage, role of H2O2, and pH solution were investigated in the treatment of 10,11-dihydro-10-hydroxy carbamazepine. From the outcome of the results, it was noticed that the chemical oxidation of the compound followed a pseudo-first-order reaction. The rate constants were ranged between 22 × 10-4 and 483 × 10-4 min-1. After electrochemical degradation of the compound, several by-products were raised, and they were analyzed using an accurate instrument, liquid chromatography-time of flight-mass spectrometry (LC-TOF/MS). In the present study, the treatment of the compound was followed by high energy consumption under 10 V and 0.5 g NaCl, reaching up to 0.65 Wh mg-1 after 50 min. The inhibition of E. coli bacteria after incubation of the treated 10,11-dihydro-10-hydroxy carbamazepine sample was investigated in terms of toxicity.
    Matched MeSH terms: Escherichia coli/metabolism
  2. Manuvera VA, Kharlampieva DD, Bobrovsky PA, Grafskaia EN, Brovina KA, Lazarev VN
    Biochem Biophys Res Commun, 2024 Feb 12;696:149473.
    PMID: 38241814 DOI: 10.1016/j.bbrc.2024.149473
    The saliva of the medicinal leech contains various anticoagulants. Some of them, such as hirudin, are well known. However, it is reasonable to believe that not all anticoagulant proteins from medicinal leech saliva have been identified. We previously performed a comprehensive study of the transcriptome, genome, and proteome of leech salivary gland cells, which led to the discovery of several previously unknown hypothetical proteins that may have anticoagulant properties. Subsequently, we obtained a series of recombinant proteins and investigated their impact on coagulation in in vitro assays. We identified a previously undescribed protein that exhibited a high ability to suppress coagulation. The His-tagged recombinant protein was expressed in Escherichia coli and purified using metal chelate chromatography. To determine its activity, commonly used coagulation methods were used: activated partial thromboplastin time, prothrombin time, and thrombin inhibition clotting assay. Clotting and chromogenic assays for factor Xa inhibition were performed to evaluate anti-Xa activity. We used recombinant hirudin as a control anticoagulant protein in all experiments. The new protein showed significantly greater inhibition of coagulation than hirudin at the same molar concentrations in the activated partial thrombin time assay. However, hirudin demonstrated better results in the direct thrombin inhibition test, although the tested protein also exhibited the ability to inhibit thrombin. The chromogenic analysis of factor Xa inhibition revealed no activity, whereas the clotting test for factor Xa showed the opposite result. Thus, a new powerful anticoagulant protein has been discovered in the medicinal leech. This protein is homologous to antistatin, with 28 % identical amino acid residues. The recombinant protein was expressed in E. coli. This protein is capable of directly inhibiting thrombin, and based on indirect evidence, other proteases of the blood coagulation cascade have been identified.
    Matched MeSH terms: Escherichia coli/metabolism
  3. Mienda BS
    J Biomol Struct Dyn, 2017 Jul;35(9):1863-1873.
    PMID: 27251747 DOI: 10.1080/07391102.2016.1197153
    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.
    Matched MeSH terms: Escherichia coli/metabolism
  4. Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR
    BMC Bioinformatics, 2014;15:134.
    PMID: 24885721 DOI: 10.1186/1471-2105-15-134
    Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host, etc., protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years of research on the matter, no comprehensive review is available on the published methods.
    Matched MeSH terms: Escherichia coli/metabolism
  5. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE
    Bioprocess Biosyst Eng, 2014 Mar;37(3):521-32.
    PMID: 23892659 DOI: 10.1007/s00449-013-1019-y
    Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy.
    Matched MeSH terms: Escherichia coli/metabolism*
  6. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY
    Benef Microbes, 2010 Jun;1(2):149-54.
    PMID: 21831754 DOI: 10.3920/BM2009.0035
    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces.
    Matched MeSH terms: Escherichia coli/metabolism
  7. Chew FN, Tan WS, Ling TC, Tan CS, Tey BT
    Anal Biochem, 2009 Jan 15;384(2):353-5.
    PMID: 18952038 DOI: 10.1016/j.ab.2008.10.010
    Green fluorescent protein (GFP) is a versatile reporter protein and has been widely used in biological research. However, its quantitation requires expensive equipment such as a spectrofluorometer. In the current study, a gel documentation imaging system using a native polyacrylamide gel for the quantitation of GFP was developed. The assay was evaluated for its precision, linearity, reproducibility, and sensitivity in the presence of Escherichia coli cells and was compared with the spectrofluorometric method. Using this newly established, gel-based imaging technique; the amount of GFP can be quantified accurately.
    Matched MeSH terms: Escherichia coli/metabolism
  8. Lee SK, Tan KW, Ng SW
    J Inorg Biochem, 2016 06;159:14-21.
    PMID: 26901628 DOI: 10.1016/j.jinorgbio.2016.02.010
    Three transition metal derivatives (Zn, Cu, and Ni) of 2-[2-bromoethyliminomethyl]-4-[ethoxymethyl]phenol (L) were synthesized by the reaction of the metal salts with the Schiff base ligand in one pot. In the crystal structure of [Zn(L)Br], the Schiff base ligand binds to the metal center through its phenolate oxygen and imine nitrogen, and adopts a distorted tetrahedral geometry. These compounds were found to inhibit topoisomerase I (topo I) activity, induce DNA cleavage and show DNA binding activity. Moreover, these compounds were found to be cytotoxic towards several cancer cell lines (A2780, MCF-7, HT29, HepG2, A549, PC3, LNCaP) and prevent metastasis of PC3. Collectively, Cu(II) complex 2 shows superior activity relative to its Zn(II) and Ni(II) analogs.
    Matched MeSH terms: Escherichia coli/metabolism*
  9. Abd Rahman NH, Md Jahim J, Abdul Munaim MS, A Rahman R, Fuzi SFZ, Md Illias R
    Enzyme Microb Technol, 2020 Apr;135:109495.
    PMID: 32146929 DOI: 10.1016/j.enzmictec.2019.109495
    E. coli has been engineered to produce xylitol, but the production faces bottlenecks in terms of production yield and cell viability. In this study, recombinant E. coli (rE. coli) was immobilized on untreated and treated multiwalled carbon nanotubes (MWCNTs) for xylitol production. The immobilized rE. coli on untreated MWCNTs gave the highest xylitol production (5.47 g L-1) and a productivity of 0.22 g L-1 h-1. The doubling time for the immobilized cells increased up to 20.40 h and was higher than that of free cells (3.67 h). Cell lysis of the immobilized cells was reduced by up to 73 %, and plasmid stability improved by up to 17 % compared to those of free cells. Xylitol production using the optimum parameters (pH 7.4, 0.005 mM and 29 °C) achieved a xylitol production and productivity of 6.33 g L-1 and 0.26 g L-1 h-1, respectively. A seven-cycle repeated batch fermentation was carried out for up to 168 h, which showed maximum xylitol production of 7.36 g L-1 during the third cycle. Hence, this new adsorption immobilization system using MWCNTs is an alternative to improve the production of xylitol.
    Matched MeSH terms: Escherichia coli/metabolism*
  10. Gul R, Hanif MU, Gul F, Rehman HM, Saleem M, Ahmad MS, et al.
    Mol Biotechnol, 2023 Jul;65(7):1062-1075.
    PMID: 36437440 DOI: 10.1007/s12033-022-00612-y
    The current study focuses on molecular cloning, expression and structural characterization of growth hormone-receptor (GHR) and its extracellular domain as growth hormone binding protein (GHBP) from the liver of Nili-Ravi buffalo (Bubalus bubalis; Bb). RNA was isolated, genes were amplified by reverse transcriptase-polymerase chain reaction and sequence was characterized. The BbGHR sequence showed three amino acid variations in the extracellular domain when compared with Indian BbGHR. For the production of full length BbGHR and BbGHBP in Escherichia coli (E. coli) BL21 (RIPL) Codon Plus, expression plasmids were constructed under the control of T7lac promoter and isopropyl β-D thiogalactopyranoside was used as an inducer. BbGHR and BbGHBP were expressed as inclusion bodies at ~ 40% and > 30% of the total E. coli proteins, respectively. The BbGHBP was solubilized and refolded by dilution method using cysteine-cystine redox potential. The recombinant BbGHBP was purified and biological activity was checked on HeLa cell lines showing increase cell proliferation in the presence of ovine GH (oGH), hence justifying the increase in the half-life of GH in the presence of BbGHBP. For the molecular interactions of oGH-BbGHBP multiple docking programs were employed to explore the subsequent interactions which showed high binding affinity and presence of large number of hydrogen bonds. Molecular Dynamics studies performed to examine the stability of proteins and exhibited stable structures along with favorable molecular interactions. This study has described the sequence characterization of BbGHR in Nili-Ravi buffaloes and hence provided the basis for the assessment of GH-GHR binding in other Bovidae species.
    Matched MeSH terms: Escherichia coli/metabolism
  11. Wong YC, Ng AWR, Chen Q, Liew PS, Lee CW, Sim EUH, et al.
    ACS Synth Biol, 2023 Apr 21;12(4):909-921.
    PMID: 37026178 DOI: 10.1021/acssynbio.2c00580
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.
    Matched MeSH terms: Escherichia coli/metabolism
  12. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
    Matched MeSH terms: Escherichia coli/metabolism
  13. Vincent M, Pometto AL, van Leeuwen JH
    Bioresour Technol, 2014 Apr;158:1-6.
    PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083
    Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
    Matched MeSH terms: Escherichia coli/metabolism
  14. Chong SK, Mohamad MS, Mohamed Salleh AH, Choon YW, Chong CK, Deris S
    Comput Biol Med, 2014 Jun;49:74-82.
    PMID: 24763079 DOI: 10.1016/j.compbiomed.2014.03.011
    This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli.
    Matched MeSH terms: Escherichia coli/metabolism*
  15. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
    Matched MeSH terms: Escherichia coli/metabolism*
  16. Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK
    Biochem Biophys Res Commun, 2013 Oct 4;439(4):576-9.
    PMID: 24025676 DOI: 10.1016/j.bbrc.2013.09.016
    Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
    Matched MeSH terms: Escherichia coli/metabolism*
  17. Narayanan K, Lee CW, Radu A, Sim EU
    Anal Biochem, 2013 Aug 15;439(2):142-4.
    PMID: 23608053 DOI: 10.1016/j.ab.2013.04.010
    Successful gene delivery into mammalian cells using bactofection requires entry of the bacterial vector via cell surface integrin receptors followed by release of plasmid DNA into the cellular environment. We show, for the first time, that addition of the DNA transfection reagent Lipofectamine improves entry of invasive Escherichia coli into HeLa cells and enhances up to 2.8-fold green fluorescent protein (GFP) expression from a reporter plasmid. The addition of Lipofectamine may be applicable to other bacterial vectors to increase their DNA delivery efficiency into mammalian cells.
    Matched MeSH terms: Escherichia coli/metabolism*
  18. Krishnan T, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4016-30.
    PMID: 22666015 DOI: 10.3390/s120404016
    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.
    Matched MeSH terms: Escherichia coli/metabolism
  19. Lee KW, Tey BT, Ho KL, Tan WS
    J Appl Microbiol, 2012 Jan;112(1):119-31.
    PMID: 21992228 DOI: 10.1111/j.1365-2672.2011.05176.x
    To display a liver-specific ligand on the hepatitis B virus core particles for cell-targeting delivery.
    Matched MeSH terms: Escherichia coli/metabolism
  20. Vincent M, Pometto AL, van Leeuwen JH
    J Microbiol Biotechnol, 2011 Jul;21(7):703-10.
    PMID: 21791956
    Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
    Matched MeSH terms: Escherichia coli/metabolism*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links