Displaying publications 1 - 20 of 352 in total

  1. Al Nakshabandi A, Daher AM
    Ear Nose Throat J, 2023 Jan;102(1):20-23.
    PMID: 33320015 DOI: 10.1177/0145561320982164
    Alveolar soft part sarcoma (ASPS) is an aggressive soft-tissue malignancy, notorious for its metastasis to other tissues. A considerable number of cases in the head and neck have been reported but not in the hypopharynx. We describe a 31-year-old man with an incidental finding of a hypopharyngeal mass. Flexible laryngoscopy revealed a fleshy mass 2 × 2 cm2 originating from the left hypopharynx and overlying the epiglottis. Computed tomography scan demonstrated a soft tissue mass in the left wall of the oropharynx measuring about 2.2 × 1.8 cm2, projecting into the hypopharyngeal air space. Magnetic resonance imaging showed a significant thickening of the left hypopharyngeal wall forming a mass lesion occupying the left pyriform sinus and abutting the left aryepiglottic fold. Histopathology indicated that tumor cells were polygonal and epithelioid, with abundant eosinophilic to clear flocculent cytoplasm, eccentric nuclei, and prominent nucleoli. The tumor was positive for smooth muscle actin with rare cells staining for Human Melanoma Black (HMB45). Fluorescence in situ hybridization for transcription factor E3 was also performed and supported the above diagnosis. Our study reports the first case of ASPS in the hypopharynx.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  2. Li Z, Zhang F, Shi J, Chan NW, Tan ML, Kung HT, et al.
    Mar Pollut Bull, 2023 Nov;196:115653.
    PMID: 37879130 DOI: 10.1016/j.marpolbul.2023.115653
    Chromophoric dissolved organic matter (CDOM) occupies a critical part in biogeochemistry and energy flux of aquatic ecosystems. CDOM research spans in many fields, including chemistry, marine environment, biomass cycling, physics, hydrology, and climate change. In recent years, a series of remarkable research milestone have been achieved. On the basis of reviewing the research process of CDOM, combined with a bibliometric analysis, this study aims to provide a comprehensive review of the development and applications of remote sensing in monitoring CDOM from 2003 to 2022. The findings show that remote sensing data plays an important role in CDOM research as proven with the increasing number of publications since 2003, particularly in China and the United States. Primary research areas have gradually changed from studying absorption and fluorescence properties to optimization of remote sensing inversion models in recent years. Since the composition of oceanic and freshwater bodies differs significantly, it is important to choose the appropriate inversion method for different types of water body. At present, the monitoring of CDOM mainly relies on a single sensor, but the fusion of images from different sensors can be considered a major research direction due to the complex characteristics of CDOM. Therefore, in the future, the characteristics of CDOM will be studied in depth inn combination with multi-source data and other application models, where inversion algorithms will be optimized, inversion algorithms with low dependence on measured data will be developed, and a transportable inversion model will be built to break the regional limitations of the model and to promote the development of CDOM research in a deeper and more comprehensive direction.
    Matched MeSH terms: Spectrometry, Fluorescence/methods
  3. Chew FN, Tan WS, Tey BT
    J Biosci Bioeng, 2011 Feb;111(2):246-8.
    PMID: 21036662 DOI: 10.1016/j.jbiosc.2010.10.004
    A gel imaging method was employed to quantitate the GFP that had been subjected to denaturation and degradation treatments. This method is able to differentiate the nativity of GFP by relating the observed changes in the position of fluorescent bands which is unable to be detected using the spectrofluorometric method.
    Matched MeSH terms: Spectrometry, Fluorescence/methods*
  4. Fujii Y, Tohno S, Ikeda K, Mahmud M, Takenaka N
    Sci Total Environ, 2021 Jan 20;753:142009.
    PMID: 32890879 DOI: 10.1016/j.scitotenv.2020.142009
    In this paper, ambient total suspended particulates (TSP) with a focus on humic-like substances (HULIS) are characterized based on intensive ground-based field samplings collected in Malaysia during non-haze and haze periods caused by peatland fires on the Indonesian island of Sumatra. Furthermore, concentrations of water-soluble organic carbon (WSOC) and carbon content of HULIS (HULIS-C) were determined, and fluorescence spectra of the HULIS samples were recorded by excitation emission matrix (EEM) fluorescence spectroscopy. The concentrations of WSOC and HULIS-C over the entire period ranged from 4.1 to 24 and 1.3 to 18 μgC m-3, respectively. The concentrations of WSOC and HULIS-C during the peatland fire-induced strong haze periods were over 4.3 and 6.1 times higher, respectively, than the average values recorded during the non-haze periods. Even during the light haze periods, the concentrations of WSOC and HULIS-C were significantly higher than their averages during the non-haze periods. These results indicate that peatland fires induce high concentrations of WSOC, particularly HULIS-C, in ambient TSP at receptor sites. EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290-330)/(375-425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290-330)/(375-425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.
    Matched MeSH terms: Fluorescence; Spectrometry, Fluorescence
  5. Abdullah Z, Tahir NM, Abas MR, Aiyub Z, Low BK
    Molecules, 2004 Jun 30;9(7):520-6.
    PMID: 18007451
    The reactions of 2-chloropyrimidine with methylamine, ethylamine and piperidine gave the corresponding 2-N-methylamino-, 2-N-ethylamino- and 2N- piperidinopyrimidines, respectively. The fluorescence properties of these alkylamino derivatives in chloroform, ethyl acetate, carbon tetrachloride, acetone, ether, ethanol and methanol were studied. All the alkylamino derivatives showed the highest fluorescence intensity in polar protic solvents; thus 2-N-methylaminopyrimidine (highest fluorescence intensity at 377 nm when excited at 282 nm) and 2-N-ethylaminopyrimidine (highest fluorescence intensity at 375 nm, when excited at 286 nm) showed the highest fluorescence in methanol. In ethanol, 2-N-piperidinopyrimidine showed a fluorescence peak at 403 nm when excited at 360 nm and in chloroform it fluoresced at 392 nm when excited at 356 nm.
    Matched MeSH terms: Fluorescence
  6. Bakar KA, Feroz SR
    PMID: 31302564 DOI: 10.1016/j.saa.2019.117337
    The past decade has seen an increase in the number of research papers on ligand binding to proteins based on fluorescence spectroscopy. In most cases, determination of the binding affinity is made by analyzing the quenching of protein fluorescence induced by the ligand. However, many such articles, even those published in reputed journals, suffer from several mistakes with regard to analysis of fluorescence quenching data. Using the binding of phenylbutazone to human serum albumin as a model, we consider some of these mistakes and show how they affect the values of the association constant. In particular, the failure to correct for the inner filter effect and the use of unsuitable equations are discussed. Ligand binding data presented in these articles should be treated with caution, especially in the absence of data from complementary techniques.
    Matched MeSH terms: Fluorescence
  7. Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, et al.
    Mar Pollut Bull, 2021 Apr;165:112059.
    PMID: 33677415 DOI: 10.1016/j.marpolbul.2021.112059
    Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.
    Matched MeSH terms: Fluorescence
  8. Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ
    Crit Rev Anal Chem, 2020 Nov 06.
    PMID: 33155481 DOI: 10.1080/10408347.2020.1839736
    The past several decades have seen increasing concern regarding the wide distribution of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Primary toxicological data show PAHs' persistent characteristics and possible toxicity effects. Because of this pressing global issue, electroanalytical methods have been introduced. These methods are effective for PAH determination in environmental waters, even outclassing sophisticated analytical techniques such as chromatography, conventional spectrophotometry, fluorescence, and capillary electrophoresis. Herein, the literature published on PAHs is reviewed and discussed with special regard to PAH occurrence. Moreover, the recent developments in electrochemical sensors for PAH determination and the challenges and future outlooks in this field, are also presented.
    Matched MeSH terms: Spectrometry, Fluorescence
  9. Abdullah, Z., Halim, Z.I.A., Bakar, M.A.A., Idris, A.M.
    ASM Science Journal, 2009;3(1):39-44.
    3-Nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were obtained when 2-chloro-3-nitropyridine was treated with phenol and p-cresol, respectively. Fluorescence studies were carried out in various solvents, in capped and uncapped conditions and for differing concentrations. Both 3-nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were fluorescent compounds but 3-Nitro-2-(4-methyl)phenoxypyridine was more fluorescent than 3-nitro-2-phenoxypyridine in all the solvents used. The fluorescence intensity decreased with concentration and time.
    Matched MeSH terms: Fluorescence
  10. Dostani M, Kianfar AH, Mahmood WA, Dinari M, Farrokhpour H, Sabzalian MR, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 05;180:144-153.
    PMID: 28284160 DOI: 10.1016/j.saa.2017.02.047
    In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4×105, 1.9×105 and 4.2×104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n>1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2+, Cu2+ and VO2+ ions were colonized by fungal growth.
    Matched MeSH terms: Spectrometry, Fluorescence
  11. Meor Yusoff Meor Sulaiman
    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no tedious sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results obtained from this analysis with certified reference standards show very small differences between them.
    Matched MeSH terms: Fluorescence
  12. Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, et al.
    Chromosome Res, 2021 12;29(3-4):373-390.
    PMID: 34657216 DOI: 10.1007/s10577-021-09675-0
    Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  13. Elgar CE, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, et al.
    J Am Chem Soc, 2023 Jan 18;145(2):1236-1246.
    PMID: 36607895 DOI: 10.1021/jacs.2c11111
    Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
    Matched MeSH terms: Fluorescence Resonance Energy Transfer
  14. Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, et al.
    Int J Mol Sci, 2023 Jul 29;24(15).
    PMID: 37569560 DOI: 10.3390/ijms241512186
    The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
    Matched MeSH terms: Microscopy, Fluorescence
  15. Lee ST, Beaumont D, Su XD, Muthoosamy K, New SY
    Anal Chim Acta, 2018 Jun 20;1010:62-68.
    PMID: 29447672 DOI: 10.1016/j.aca.2018.01.012
    Single strand DNA (ssDNA) chimeras consisting of a silver nanoclusters-nucleating sequence (NC) and an aptamer are widely employed to synthesize functional silver nanoclusters (AgNCs) for sensing purpose. Despite its simplicity, this chimeric-templated AgNCs often leads to undesirable turn-off effect, which may suffer from false positive signals caused by interference. In our effort to elucidate how the relative position of NC and aptamer affects the fluorescence behavior and sensing performance, we systematically formulated these NC and aptamer regions at different position in a DNA chimera. Using adenosine aptamer as a model, we tested the adenosine-induced optical response of each design. We also investigated the effect of linker region connecting NC and aptamer, as well as different NC sequence on the sensing performance. We concluded that locating NC sequence at 5'-end exhibited the best response, with immediate fluorescence enhancement observed over a wide linear range (1-2500 μM). Our experimental findings help to explain the emission behavior and sensing performance of chimeric conjugates of AgNCs, providing an important means to formulate a better aptasensor.
    Matched MeSH terms: Fluorescence
  16. Lee WC, Khoo BE, Abdullah AFL
    Forensic Sci Int, 2016 06;263:1-9.
    PMID: 27061146 DOI: 10.1016/j.forsciint.2016.03.046
    Evidence in crime scenes available in the form of biological stains which cannot be visualized during naked eye examination can be detected by imaging their fluorescence using a combination of excitation lights and suitable filters. These combinations selectively allow the passage of fluorescence light emitted from the targeted stains. However, interference from the fluorescence generated by many of the surface materials bearing the stains often renders it difficult to visualize the stains during forensic photography. This report describes the use of background correction algorithm (BCA) to enhance the visibility of seminal stain, a biological evidence that fluoresces. While earlier reports described the use of narrow band-pass filters for other fluorescing evidences, here, we utilize BCA to enhance images captured using commonly available colour filters, yellow, orange and red. Mean-based contrast adjustment was incorporated into BCA to adjust the background brightness for achieving similarity of images' background appearance, a crucial step for ensuring success while implementing BCA. Experiment results demonstrated the effectiveness of our proposed colour filters' approach using the improved BCA in enhancing the visibility of seminal stains in varying dilutions on selected surfaces.
    Matched MeSH terms: Fluorescence*
  17. Razali WA, Sreenivasan VK, Bradac C, Connor M, Goldys EM, Zvyagin AV
    J Biophotonics, 2016 08;9(8):848-58.
    PMID: 27264934 DOI: 10.1002/jbio.201600050
    Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid.
    Matched MeSH terms: Microscopy, Fluorescence*
  18. Goh TC, Bajuri MY, Yusof MF, Mohd Apandi H, Sarifulnizam FA
    Cureus, 2021 Mar 03;13(3):e13664.
    PMID: 33824815 DOI: 10.7759/cureus.13664
    We report the case of a 14-year-old girl who presented with a one-month history of back pain and bilateral lower limb weakness preceded by constitutional symptoms. She neither had a family history of malignancy nor a previous history of trauma. A series of imaging procedures revealed an aggressive lesion of the T12 vertebra with a large soft-tissue component and intraspinal extension leading to spinal cord compression causing cord edema. She underwent urgent posterior instrumentation and fixation of T9 to T12 vertebrae due to worsening neurological deficits. Adjuvant and neoadjuvant chemotherapy with palliative spinal stabilisation were also performed. Features of the lesion were highly consistent with ES on immunohistochemical study and fluorescence in situ hybridization (FISH) analysis for the EWSR1 gene. Postoperatively, both of her lower limbs improved in power and she benefited from regular physiotherapy.
    Matched MeSH terms: Fluorescence; In Situ Hybridization, Fluorescence
  19. Yusop RM, Unciti-Broceta A, Bradley M
    Bioorg Med Chem Lett, 2012 Sep 15;22(18):5780-3.
    PMID: 22901897 DOI: 10.1016/j.bmcl.2012.07.101
    Variation at the 3' position of fluorescein via Suzuki-Miyaura cross-coupling with aryl and heteroaryl moieties gave a family of anthofluoresceins whose spectroscopic properties were studied. The 1-methylindole derivative gave the highest quantum yield and was observed to behave as a molecular rotor, displaying marked variations in fluorescent intensities with viscosity and offering possible application in cellular sensing and fluorescent polarisation assays.
    Matched MeSH terms: Fluorescence Polarization; Spectrometry, Fluorescence
  20. Iqbal A, Saidu U, Adam F, Sreekantan S, Yahaya N, Ahmad MN, et al.
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923041 DOI: 10.3390/molecules26092509
    In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●-. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
    Matched MeSH terms: Fluorescence*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links