Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA
    ScientificWorldJournal, 2014;2014:639246.
    PMID: 24723819 DOI: 10.1155/2014/639246
    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  2. Wan Ibrahim WA, Warno SA, Aboul-Enein HY, Hermawan D, Sanagi MM
    Electrophoresis, 2009 Jun;30(11):1976-82.
    PMID: 19517438 DOI: 10.1002/elps.200800499
    An efficient method for the simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers was developed by CD-modified MEKC using a dual mixture of neutral CDs as chiral selector. Three neutral CDs namely hydroxypropyl-beta-CD, hydroxypropyl-gamma-CD, and gamma-CD were tested as chiral selectors at different concentrations ranging from 10, 20, 30 and 40 mM, but enantiomers of the studied fungicides were not completely separated. The best dual chiral recognition mode for the simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM hydroxypropyl-beta-CD and 3 mM hydroxypropyl-gamma-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM SDS to which methanol-acetonitrile (10%:5% v/v) was added as organic modifiers. The best separation was based on the appearance of 10 peaks simultaneously, with good resolution (R(s) 1.1-15.9), and peak efficiency (N>200,000). Good repeatabilities in the migration time, peak area, and peak height were obtained in terms of RSD ranging from (0.72 to 1.06)%, (0.39 to 3.49)%, and (1.90 to 4.84)%, respectively.
    Matched MeSH terms: Fungicides, Industrial/isolation & purification*
  3. Nendick E, Mohamed F, Raubenheimer J, Gawarammana I, Buckley NA, Eddleston M
    Clin Toxicol (Phila), 2022 Oct;60(10):1106-1112.
    PMID: 35950874 DOI: 10.1080/15563650.2022.2105710
    BACKGROUND: Pesticide self-poisoning is a global clinical and public health problem. While self-poisoning with insecticides and herbicides has been extensively studied, there is minimal literature on acute fungicide self-poisoning. We aimed to study the clinical course and outcome of fungicide self-poisoned patients recruited to a prospective cohort in Sri Lanka.

    METHODS: We conducted a prospective study of patients presenting with fungicide self-poisoning to nine hospitals in Sri Lanka between 2002 and 2020. Patients were enrolled by clinical research assistants, with clinical outcomes being recorded at regular review for each patient.

    RESULTS: We identified 337 cases of self-poisoning with fungicides (alcohol as only co-ingestant), including 28 different fungicides across 5 different fungicide classes. Median time from ingestion to examination was 3.1 (1.8-5.7) h. Nearly all presented to hospital fully conscious (GCS 15, 15-15)- only 27 patients (8.0%) presented with reduced GCS (<15) and only 2 (0.6%) had GCS 3/15. Most patients (333/337, 98.8%) made a full recovery, of whom only eight (2.37%) required intubation and ventilation. Four patients died (case fatality rate: 1.2%; 95% CI 0.0-23.4) after ingestion of edifenphos (n = 2), propamocarb and pyraclostrobin.

    CONCLUSION: Fungicide self-poisoning appears to be less hazardous than insecticide or herbicide self-poisoning, with a substantially lower case fatality in the same cohort. Edifenphos is an exception to this 'less toxic' rule; as a WHO Class Ib highly hazardous pesticide, we recommend its withdrawal from, and replacement in, global agricultural practice. Propamocarb should be listed in the WHO hazard classification as propamocarb hydrochloride to reflect the higher toxicity of the common agricultural formulation. Pyraclostrobin currently has no WHO classification; one is urgently required now that its ingestion has now been linked the death of a patient. Additional prospective clinical data on fungicide self-poisoning is required to expand knowledge on the effects of these diverse compounds.

    Matched MeSH terms: Fungicides, Industrial*
  4. Al-Samarrai G, Singh H, Syarhabil M
    Ann Agric Environ Med, 2012;19(4):673-6.
    PMID: 23311787
    Fungicides are widely used in conventional agriculture to control plant diseases. Prolonged usage often poses health problems as modern society is becoming more health-conscious. Penicillium digitatum, the cause of citrus green mould, is an important postharvest pathogen which causes serious losses annually. The disease is currently managed with synthetic fungicides. There is, however, a growing concern globally about the continuous use of synthetic chemicals on food crops because of their potential effects on human health and the environment.
    Matched MeSH terms: Fungicides, Industrial/pharmacology; Fungicides, Industrial/toxicity; Fungicides, Industrial/chemistry*
  5. Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al.
    Front Microbiol, 2017;8:3.
    PMID: 28144236 DOI: 10.3389/fmicb.2017.00003
    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.
    Matched MeSH terms: Fungicides, Industrial
  6. Ibrahim WA, Hermawan D, Sanagi MM
    Methods Mol Biol, 2013;970:349-61.
    PMID: 23283789 DOI: 10.1007/978-1-62703-263-6_22
    The separation of enantiomers is one of the important fields of modern analytical chemistry, especially for agrochemical and pharmaceutical products because the stereochemistry has a significant influence on the biological activities of compounds. Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) has become an important capillary electrophoresis mode for enantioseparations. Here, we describe an example of a CD-MEKC method using hydroxypropyl-γ-cyclodextrin as chiral selector and sodium dodecyl sulfate as micellar solution for enantioseparation of triazole fungicides and the drug econazole.
    Matched MeSH terms: Fungicides, Industrial/analysis; Fungicides, Industrial/chemistry
  7. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, et al.
    Sci Rep, 2020 12 18;10(1):22323.
    PMID: 33339951 DOI: 10.1038/s41598-020-79335-6
    The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*; Fungicides, Industrial/chemistry
  8. Ali A, Wee Pheng T, Mustafa MA
    J Appl Microbiol, 2015 Jun;118(6):1456-64.
    PMID: 25727701 DOI: 10.1111/jam.12782
    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*; Fungicides, Industrial/chemistry
  9. Muhamad H, Zainol M, Sahid I, Abu Seman I
    Drug Test Anal, 2012 Aug;4 Suppl 1:112-7.
    PMID: 22851367 DOI: 10.1002/dta.1351
    In oil palm plantations, the fungicide hexaconazole is used to control Ganoderma infection that threatens to destroy or compromisethe palm. The application of hexaconazole is usually through soil drenching, trunk injection, or a combination of these two methods. It is therefore important to have a method to determine the residual amount of hexaconazole in the field such as in samples of water, soil, and leaf to monitor the use and fate of the fungicide in oil palm plantations. This study on the behaviour of hexaconazole in oil palm agro-environment was carried out at the UKM-MPOB Research Station, Bangi Lama, Selangor. Three experimental plots in this estate with 7-year-old Dura x Pisifera (DxP) palms were selected for the field trial. One plot was sprayed with hexaconazole at the manufacturer's recommended dosage, one at double the recommended dosage, and the third plot was untreated control. Hexaconazole residues in the soil, leaf, and water were determined before and after fungicide treatment. Soil samples were randomly collected from three locations at different depths (0-50 cm) and soil collected fromthe same depth were bulked together. Soil, water, and palm leaf were collected at -1 (day before treatment), 0 (day of treatment), 1, 3, 7, 14, 21, 70, 90, and 120 days after treatment. Hexaconazole was detected in soil and oil palm leaf, but was not detected in water from the nearby stream.
    Matched MeSH terms: Fungicides, Industrial/analysis*; Fungicides, Industrial/isolation & purification
  10. Muhialdin BJ, Hassan Z, Sadon SKh
    J Food Sci, 2011 Sep;76(7):M493-9.
    PMID: 21806613 DOI: 10.1111/j.1750-3841.2011.02292.x
    In the search for new preservatives from natural resources to replace or to reduce the use of chemical preservatives 4 strains of lactic acid bacteria (LAB) were selected to be evaluated for their antifungal activity on selected foods. The supernatants of the selected strains delayed the growth of fungi for 23 to 40 d at 4 °C and 5 to 6 d at 20 and 30 °C in tomato puree, 19 to 29 d at 4 °C and 6 to 12 d at 20 and 30 °C in processed cheese, and 27 to 30 d at 4 °C and 12 to 24 d at 20 and 30 °C in commercial bread. The shelf life of bread with added LAB cells or their supernatants were longer than normal bread. This study demonstrates that Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, L. pentosus G004, and L. paracasi D5 either the cells or their supernatants could be used as biopreservative in bakery products and other processed foods.
    Matched MeSH terms: Fungicides, Industrial/metabolism; Fungicides, Industrial/pharmacology*
  11. Maluin FN, Hussein MZ, Azah Yusof N, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    J Agric Food Chem, 2020 Apr 15;68(15):4305-4314.
    PMID: 32227887 DOI: 10.1021/acs.jafc.9b08060
    The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*; Fungicides, Industrial/chemistry
  12. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NHZ, et al.
    PLoS One, 2020;15(4):e0231315.
    PMID: 32315346 DOI: 10.1371/journal.pone.0231315
    Although fungicides could be the best solution in combating fungal infections in crops, however, the phytotoxic level of fungicides to the crops should be tested first to ensure that it is safe for the crops. Moreover, nanocarrier systems of fungicides could play a significant role in the advancement of crop protection. For this reason, chitosan was chosen in the present study as a nanocarrier for fungicides of hexaconazole and/or dazomet in the development of a new generation of agronanofungicides with a high antifungal potent agent and no phytotoxic effect. Hence, the encapsulation of fungicides into the non-toxic biopolymer, chitosan was aims to reduce the phytotoxic level of fungicides. In the present study, the in vivo phytotoxicity of chitosan-fungicides nanoparticles on the physiological and vegetative growth of oil palm seedlings was evaluated in comparison to its pure fungicides as well as the conventional fungicides. The results revealed the formation of chitosan-fungicides nanoparticles could reduce the phytotoxic effect on oil palm seedlings compared to their counterparts, pure fungicides. The chitosan-fungicides nanoparticles were seen to greatly reduce the phytotoxic effect compared to the conventional fungicides with the same active ingredient.
    Matched MeSH terms: Fungicides, Industrial/toxicity*; Fungicides, Industrial/chemistry
  13. Amna Shoaib, Arshad Javaid, Nighat Sana
    Sains Malaysiana, 2017;46:1693-1700.
    Collar rot of chili (Capsicum annuum L.) is a very destructive disease caused by a soil-borne fungal pathogen Sclerotium rolfsii Sacc. Generally, chemical fungicides are used to combat the menace but this practice is being discouraged because of health and environmental concerns. In the present study, an alternative environment friendly strategy was used to manage this disease by using farmyard manure (FYM) and two commercial biofertilizers namely Biopower and Feng Shou. S. rolfsii inoculated pot soil was amended with 1% and 2% FYM and the two commercial biofertilizers. Inoculation of soil with S. rolfsii only (positive control) resulted in the highest disease incidence (73%) and plant mortality (60%). Biopower and Feng Shou application reduced disease incidence to 20% and 7%, respectively and plant mortality to 0%. Likewise, 1% and 2% FYM amendment reduced disease incidence to 33% and plant mortality to 26% and 7%, respectively. Under biotic stress of S. rolfsii, FYM and biofertilizers applications, either alone or in combination, significantly enhanced root and shoot growth over positive control. S. rolfsii inoculation significantly increased peroxidase and polyphenol oxidase activities in chili plants which were further increased by application of either of the two biofertilizers. The present study concludes that biofertilizers Biopower and Feng Shou alone or in combination with 2% FYM can be effectively utilized to manage southern blight of chili.
    Matched MeSH terms: Fungicides, Industrial
  14. Rosli H, Mayfield DA, Batzer JC, Dixon PM, Zhang W, Gleason ML
    Plant Dis, 2017 Oct;101(10):1721-1728.
    PMID: 30676929 DOI: 10.1094/PDIS-02-17-0294-RE
    A warning system for the sooty blotch and flyspeck (SBFS) fungal disease complex of apple, developed originally for use in the southeastern United States, was modified to provide more reliable assessment of SBFS risk in Iowa. Modeling results based on previous research in Iowa and Wisconsin had suggested replacing leaf wetness duration with cumulative hours of relative humidity (RH) ≥97% as the weather input to the SBFS warning system. The purpose of the present study was to evaluate the performance of a RH-based SBFS warning system, and to assess the potential economic benefits for its use in Iowa. The warning system was evaluated in two separate sets of trials-trial 1 during 2010 and 2011, and trial 2 during 2013-2015-using action thresholds based on cumulative hours of RH ≥97% and ≥90%, respectively, in conjunction with two different fungicide regimes. The warning system was compared with a traditional calendar-based system that specified spraying at predetermined intervals of 10 to 14 days. In trial 1, use of the RH ≥97% threshold caused substantial differences between two RH sensors in recording number of hours exceeding the threshold. When both RH thresholds were compared for 2013-2015, on average, RH ≥90% resulted in a 53% reduction in variation of cumulative hours between two identical RH sensors placed adjacent to each other in an apple tree canopy. Although both the SBFS warning system and the calendar-based system resulted in equivalent control of SBFS, the warning system required fewer fungicide sprays than the calendar-based system, with an average of 3.8 sprays per season (min = 2; max = 5) vs. 6.4 sprays per season (min = 5; max = 8), respectively. The two fungicide regimes provided equivalent SBFS control when used in conjunction with the warning system. A partial budget analysis showed that using the SBFS warning system with a threshold of RH ≥90% was cost effective for orchard sizes of >1 ha. The revised warning system has potential to become a valuable decision support tool for Midwest apple growers because it reduces fungicide costs while protecting apples as effectively as a calendar-based spray schedule. The next step toward implementation of the SBFS warning system in the North Central U.S. should be multiyear field testing in commercial orchards throughout the region.
    Matched MeSH terms: Fungicides, Industrial
  15. Sarina Mohamad, Nur Atiqah Abd Hadi, Tun Mohd Firdaus Azis, Nur Syafiqah Rahim
    Science Letters, 2020;14(2):94-102.
    MyJurnal
    Infection on plant caused by Aspergillus niger leads to the destruction of quantity and quality of crop yields. Normally, this disease is solved by the chemical fungicides. Therefore, this study was carried out to seek a potential natural fungicide from fruit waste which is safer and economical to inhibit Aspergillus niger. Cucurbita maxima (pumpkin) seeds and Punica granatum (pomegaranate) peels were extracted using maceration method with 80% ethanol. Brine Shrimp Lethality Assay (BLSA) was used to test the presence of bioactive components in the extracts at concentration of 10 µg/mL, 100 µg/mL and 1000 µg/mL and they are expressed in terms of LC50 (Median Lethal Concentration) respectively. The study revealed that Cucurbita maxima extract was inactive, while Punica granatum extract and the mixture of both extracts at ratio 1:1 were active at 1000 µg/mL. Furthermore, the antifungal activity of Cucurbita maxima extract, Punica granatum extract, and mixture of both extracts were further tested using well-diffusion method against A. niger at 25 mg/ml, 50 mg/mL, 75 mg/ml and 100 mg/mL respectively. The findings revealed the mixture of both extracts were exerted effectively against A. niger at the lowest concentration with 20.67±2.52 mm and this gave significant zone of inhibition. The result of the study indicates that the mixture extraction of pomegranate peels and pumpkin seeds at 25 mg/mL has a great potential to be formulated as commercial bio-fungicide.
    Matched MeSH terms: Fungicides, Industrial
  16. Muhamad H, Sahid IB, Surif S, Ai TY, May CY
    Trop Life Sci Res, 2012 May;23(1):15-23.
    PMID: 24575222 MyJurnal
    The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10-12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel.
    Matched MeSH terms: Fungicides, Industrial
  17. Teoh YP, Don MM, Ujang S
    Biotechnol Prog, 2012 Jan-Feb;28(1):232-41.
    PMID: 21990033 DOI: 10.1002/btpr.714
    Two statistical tools, Plackett-Burman design (PBD) and Box-Behnken design (BBD) were used to optimize the mycelia growth of Schizophyllum commune with different nutrient components. Results showed that 32.92 g/L of biomass were produced using a medium consisting of 18.74 g/L yeast extract, 38.65 g/L glucose, and 0.59 g/L MgSO(4).7H(2)O. The experimental data fitted well with the model predicted values within 0.09 to 0.77% error. The biomass was also tested for antifungal activity against wood degrading fungi of rubberwood. Results showed that the minimum inhibitory concentration (MIC) values for antifungal activity range from 0.16 to 5.00 μg/μL. The GC-MS analysis indicated that this fungus produced several compounds, such as glycerin, 2(3H)-furanone, 5-heptyldihydro-, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, and triacetin.
    Matched MeSH terms: Fungicides, Industrial/metabolism*
  18. Sanagi MM, See HH, Ibrahim WA, Naim AA
    J Chromatogr A, 2004 Dec 03;1059(1-2):95-101.
    PMID: 15628129
    High temperature liquid chromatography using water-rich and superheated water eluent is evaluated as a new approach for the separation of selected triazole fungicides, hexaconazole, tebuconazole, propiconazole, and difenoconazole. Using a polybutadiene-coated zirconia column at temperatures of 100-150 degrees C, clear separations were achieved when 100% purified water was utilized as organic-free eluent. Excellent limits of detection down to pg level were obtained for the separation of the triazole fungicides under optimum conditions. Van't Hoff plots for the separations were linear suggesting that no changes occurred in the retention mechanism over the temperature range studied.
    Matched MeSH terms: Fungicides, Industrial/analysis*
  19. Shreaz S, Shiekh RA, Raja V, Wani WA, Behbehani JM
    Chem Biol Interact, 2016 Mar 05;247:64-74.
    PMID: 26806515 DOI: 10.1016/j.cbi.2016.01.015
    In this study, we have used aldehyde function of cinnamaldehyde to synthesize N, N'-Bis (cinnamaldehyde) ethylenediimine [C20H20N2] and Co(II) complex of the type [Co(C40H40N4)Cl2]. The structures of the synthesized compounds were determined on the basis of physiochemical analysis and spectroscopic data ((1)H NMR, FTIR, UV-visible and mass spectra) along with molar conductivity measurements. Anticandidal activity of cinnamaldehyde its ligand [L] and Co(II) complex was investigated by determining MIC80, time-kill kinetics, disc diffusion assay and ergosterol extraction and estimation assay. Ligand [L] and Co(II) complex are found to be 4.55 and 21.0 folds more efficient than cinnamaldehyde in a liquid medium. MIC80 of Co(II) complex correlated well with ergosterol inhibition suggesting ergosterol biosynthesis to be the primary site of action. In comparison to fluconazole, the test compounds showed limited toxicity against H9c2 rat cardiac myoblasts. In confocal microscopy propidium iodide (PI) penetrates the yeast cells when treated with MIC of metal complex, indicating a disruption of cell membrane that results in imbibition of dye. TEM analysis of metal complex treated cells exhibited notable alterations or damage to the cell membrane and the cell wall. The structural disorganization within the cell cytoplasm was noted. It was concluded that fungicidal activity of Co(II) complex originated from loss of membrane integrity and a decrease in ergosterol content is only one consequence of this.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  20. Mohd-Assaad N, McDonald BA, Croll D
    Mol Ecol, 2016 Dec;25(24):6124-6142.
    PMID: 27859799 DOI: 10.1111/mec.13916
    Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.
    Matched MeSH terms: Fungicides, Industrial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links