Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Chan KW, Khong NM, Iqbal S, Umar IM, Ismail M
    Int J Mol Sci, 2012;13(7):8987-97.
    PMID: 22942747 DOI: 10.3390/ijms13078987
    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05). Also elevated significantly were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of SPF (p < 0.05). In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  2. Ahmad Mahir Razali, Khairiah Jusoh, Nor Asyikin A, Siti Adyani S, Wardatun Aathirah M, Maimon Abdullah, et al.
    Kajian yang dijalankan adalah berkaitan dengan penentuan model yang sesuai serta analisis data penyerapan logam berat oleh sayuran berdaun yang terpilih iaitu kangkung (Ipomea aquatica), sawi bunga (Brassica chinensis var parachinensis), bayam (Amaranthus oleraceus L) dan sawi putih (Brassica chinensis L.). Kajian ini bertujuan untuk menentukan dan membandingkan kandungan serta corak pengambilan logam berat yang diserap oleh sayuran dan juga bahagian-bahagiannya yang meliputi daun, batang dan akar. Penentuan model yang dibuat bertujuan bagi melihat corak penyerapan logam berat oleh sayuran atau bahagian sayuran tertentu. Logam berat yang dikaji terdiri daripada kadmium , kromium, kuprum, ferum , mangan, plumbum dan zink. Plot serakan digunakan bagi menentukan corak pengambilan logam berat dalam sayuran dan bahagian-bahagiannya. Selain itu ujian Kruskal-Wallis digunakan bagi membuat perbandingan median di antara logam berat yang diserap oleh sayuran yang dikaji. Nilai khi-kuasa dua dan juga nilai-p digunakan bagi menentukan sama ada sesuatu logam berat yang diserap itu berkait rapat dengan jenis sayuran secara signifikan. Secara umum bolehlah dikatakan bahawa logam Fe, Mn dan Zn adalah dominan dalam semua bahagian sayuran yang dikaji. Selain itu, melalui ujian Kruskal-Wallis didapati penyerapan kesemua logam berat pada setiap bahagian sayuran adalah berbeza secara signifikan. Penyuaian model regresi linear, kuadratik, kubik atau eksponen telah dilakukan terhadap data ini dan didapati kebanyakan data dapat disuaikan dengan baik oleh model kuadratik dan kubik berdasarkan nilai pekali penentuan (R2).
    Matched MeSH terms: Ipomoea
  3. Delgado-Núñez EJ, López-Arellano ME, Olmedo-Juárez A, Díaz-Nájera JF, Ocampo-Gutiérrez AY, Mendoza-de Gives P
    Trop Biomed, 2023 Mar 01;40(1):108-114.
    PMID: 37356010 DOI: 10.47665/tb.40.1.017
    Haemonchus contortus (Hc) is a hematophagous parasite affecting the health and productivity of flocks. The administration of chemical anthelmintic drugs (AH) is the common method of deworming; however, generates resistance in the parasites to AH and it is a public health risk due to drug residues in milk, meat and sub-products. Natural compounds from plants are explored to diminish this parasitosis, improving their health and productivity, without the negative effects of AH. Ipomoea genus is a group of climbing plants belonging to the Convulvulaceae family possessing perennial leaves and tuberous roots. Medicinal properties has been attributed to this plant including nutritional agents, emetics, diuretics, diaphoretics, purgatives and pesticides. The objective of this study was assessing the in vitro nematocidal activity of a hydroalcoholic extract (HA-E) obtained from Ipomoea pauciflora (Cazahuate) flowers against Hc infective larvae (L3) and to identify its phytochemical profile (PhC-P). The assay was carried out using microtiter plates (MTP). Four HA-E concentrations were assessed and Ivermectin and distilled water were used as positive and negative control groups, respectively. Approximately 100 Hc L3 were deposited in each well (n=12) and incubated at 25-35°C for 7 days. Data were analyzed using ANOVA and a General Linear Model (GLM) followed by Tukey test (P<0.05). The treatments showing a concentration-dependent effect (CDE) were analyzed to identify their 50% and 90% lethal concentrations (CL50, 90) via a Probit Analysis. The highest mortality was observed at 50 mg/mL (82.64 ± 0.71%) and the lowest at 6.25 mg/mL (56.46 ± 2.49%), showing a CDE with increasing mortality from 6.25 to 50 mg/mL. The PhC-P revealed the presence of alkaloids, coumarins, flavonoids, tannins and triterpenes/ sterols. A HA-E from flowers of I. pauciflora will be considered to assess its potential use in the control of haemonchosis in small ruminants.
    Matched MeSH terms: Ipomoea*
  4. Rrong W, Aiping T, Ashraf MA
    Saudi J Biol Sci, 2016 Sep;23(5):660-6.
    PMID: 27579018 DOI: 10.1016/j.sjbs.2015.10.028
    Jiangxi red soil was used as the tested soil and water spinach (Ipomoea aquatic) and Chinese chive (Allium tuberosum) were used as the tested vegetables in this study to investigate the effects of different amounts of sewage-sludge application on the growth of vegetables and the migration and enrichment patterns of Cu and Zn in vegetables using the potted method. The results indicated that the application of sewage sludge could improve the properties of red soil and promote vegetable growth. The dry weight of water spinach and Chinese chive reached the maximal levels when treated with the amount of sewage sludge at 4% and 10%, which was 4.38 ± 0.82 g and 1.56 ± 0.31 g, respectively. The dry weights after the application of sewage sludge were all larger than control treatment (CK) without sludge application. With increases in the applied amount of sewage sludge, the concentrations of Cu and Zu in red soil continued to increase, and the peak value was not reached. After the two vegetables were planted, the concentrations of Cu and Zn in red soil decreased by different degrees. The degrees of decrease of Zn were generally higher than those of Cu. The enrichment coefficient of water spinach on Cu showed a trend of increase followed by a decrease and reached the peak value of 1.04 ± 0.38 when the applied amount was 4%. The enrichment coefficient of Chinese chive on Cu overall showed a decreasing trend and did not reach the peak value under the treatment levels used in this experiment. The enrichment pattern of Chinese chive on Zn was not obvious, and the differences among all treatment levels were not significant (p 
    Matched MeSH terms: Ipomoea
  5. Md. Akhir, H., Ahmad, D., Rukunudin, I. H., Shamsuddin, S., A. Yahya
    MyJurnal
    This paper describes a study on the design, fabrication and testing of a prototype digging device for sweet potato tubers in bris soil. The soil texture was sandy soil (fine sand 94.53%), with mean moisture content of 9.16% and mean bulk density of 1.44 g-cm-3. The soil was prepared in a soil bin. Three types of soil digging tools were designed and fabricated to determine the optimum draft force. These were Flat or plane, V-shaped and Hoe type blades. Plane and V-shaped blades were 30 cm long, and 13 cm wide, while the Hoe type had three rods, 25 mm in diameter, 30 cm long and 6.5 cm wide with sharp cutting edge. The digging tools were tested in a soil bin filled with bris soil to determine the optimum draft force and area of soil disturbance. The results were analysed using statistical analysis of variance (ANOVA). Comparison between all blade types and blade depths to measured draft force and the area of soil disturbed showed that the highest draft of 0.54 kN-m-2 was caused by a flat or plane blade at the optimum depth of 20 cm when the area of soil disturbed was 0.180 m2 . The V-shaped blade had the mean draft of 0.51 kN-m-2, with area of soil disturbance of 0.185 m2 . Thebest choice was V-shaped blade with a rake angle of 30o at 20 cm. depth. The selected blade was fixed onto the sweet potato harvester and tested on bris soil planted with sweet potato of Telong and VitAto varieties. The harvesting efficiency of the machine in bris soil was 93.64% and 90.49% for Telong (Plot A) and VitAto (Plot B) varieties, respectively. The average ground speed and turning time during operation for plots A and B was 0.56 km-hr-1 and 102.7 s and 0.99 km-hr-1 and 81.22 s, respectively. The harvesting efficiencies for both plots showed no significant difference. The total productive time (harvesting time) and unproductive time (turning time) in plot A, at a tractor speed of 0.56 km.hr-1, was 14.8 hours for harvesting a hectare of sweet potato ( 0.068 ha.hr-1). In plot B, the total time for harvesting a hectare of sweet potato was 8.35 hours (0.12 ha.hr-1) at a tractor speed of 0.99 km.hr-1. The average harvesting time for both plots was 11.47 hr.ha-1. The average field work rate was 0.087 ha.hr-1 or 34 man-hr.ha-1 compared to manual harvesting of 150 man-hrs.ha-1.
    Matched MeSH terms: Ipomoea batatas
  6. Rozainah M
    Sains Malaysiana, 2006;35:55-62.
    A survey on coastal vegetation of Pahang in some localities from Sg. Balok in Kuantan southwards to Kuala Endau in Rompin was conducted from middle 2004 to early 2005. A total of 88 species of plants were recorded and identified mostly to the generic or species level. The usual vegetation types were sand and mudflat beach vegetations like Pandanus odoratissimus, Ipomoea pes capre and Casuarina equisetifolia and mangrove vegetation like Sonneratia caseolaris, Rhizophora mucronata and Avicennia marina. This paper also reports some unique heath-type forest vegetation like Hopea spp. in Menchali area.
    Matched MeSH terms: Ipomoea
  7. Onwude DI, Hashim N, Chen G, Putranto A, Udoenoh NR
    J Sci Food Agric, 2021 Jan 30;101(2):398-413.
    PMID: 32627847 DOI: 10.1002/jsfa.10649
    BACKGROUND: Combined infrared (CIR) and convective drying is a promising technology in dehydrating heat-sensitive foods, such as fruits and vegetables. This novel thermal drying method, which involves the application of infrared energy and hot air during a drying process, can drastically enhance energy efficiency and improve overall product quality at the end of the process. Understanding the dynamics of what goes on inside the product during drying is important for further development, optimization, and upscaling of the drying method. In this study, a multiphase porous media model considering liquid water, gases, and solid matrix was developed for the CIR and hot-air drying (HAD) of sweet potato slices in order to capture the relevant physics and obtain an in-depth insight on the drying process. The model was simulated using Matlab with user-friendly graphical user interface for easy coupling and faster computational time.

    RESULTS: The gas pressure for CIR-HAD was higher centrally and decreased gradually towards the surface of the product. This implies that drying force is stronger at the product core than at the product surface. A phase change from liquid water to vapour occurs almost immediately after the start of the drying process for CIR-HAD. The evaporation rate, as expected, was observed to increase with increased drying time. Evaporation during CIR-HAD increased with increasing distance from the centreline of the sample surface. The simulation results of water and vapour flux revealed that moisture transport around the surfaces and sides of the sample is as a result of capillary diffusion, binary diffusion, and gas pressure in both the vertical and horizontal directions. The nonuniform dominant infrared heating caused the heterogeneous distribution of product temperature. These results suggest that CIR-HAD of food occurs in a non-uniform manner with high vapour and water concentration gradient between the product core and the surface.

    CONCLUSIONS: This study provides in-depth insight into the physics and phase changes of food during CIR-HAD. The multiphase model has the advantage that phase change and impact of CIR-HAD operating parameters can be swiftly quantified. Such a modelling approach is thereby significant for further development and process optimization of CIR-HAD towards industrial upscaling. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Ipomoea batatas/radiation effects; Ipomoea batatas/chemistry*
  8. Zuharah WF, Thiagaletchumi M, Fadzly N
    Trop Life Sci Res, 2016 Aug;27(2):91-102.
    PMID: 27688853 MyJurnal DOI: 10.21315/tlsr2016.27.2.7
    The interaction between plants and insects is dynamic, and may favour either the plant or the insect. Plant chemicals are deeply implicated in this relationship and influence insect behaviour. Here, we investigated the oviposition behaviour response of Culex quinquefasciatus mosquitoes based on the colour cues produced by Ipomoea cairica leaves extract. In this study, two sets of oviposition choice experiments were conducted: (1) single solution in a cage; and (2) multiple concentration solutions in a cage. In the single solution experiment, only 1 available oviposition site was offered to 5 gravid females and in the multiple concentration tests, 4 available oviposition sites were offered to 20 gravid females. The tested concentrations were set up at 100 mL of: (1) control (distilled water only); (2) 50 ppm; (3) 150 ppm; and (4) 300 ppm of I. cairica plant extracts. The highest concentration of 300 ppm appeared to show the highest intensity with the darkest colour followed by 150 ppm and 50 ppm concentrations. More gravid females were found drowned in the highest concentration, 300 ppm of acethonilic leaves extract, compared to 150 ppm and 50 ppm of the tested extract. No eggs were found in all tested solutions. The studied extract was found to effectively attract gravid Cx. quinquefasciatus females and subsequently cause mortality and inhibit egg deposition. The interference caused by the acethonilic extract of I. cairica on the oviposition activity of Cx. quinquefasciatus can result in better control of the vector insect.
    Matched MeSH terms: Ipomoea
  9. Aishah, B., Nursabrina, M., Noriham, A., Norizzah, A.R., Mohamad Shahrimi, H.
    MyJurnal
    There are many factors influencing the stability and color variation of natural colorant anthocyanin and pH is among the most significant factor. This study aims to determine the stability of the anthocyanins in freeze-dried Hibiscus sabdariffa, Melastoma malabathricum and Ipomoea batatas in various acidic pH (pH 2.0, 2.5, 3.0, 3.5, 4.0 and 4.5). Total monomeric anthocyanin, degradation index, color density and percent polymeric color were analyzed to determine anthocyanins degradation and their color variations. Among the samples, H.sabdariffa contain the highest monomeric anthocyanins (163.3 mg/L) followed by M. malabathricum (49.9 mg/L) and the lowest is I.batatas (13.8 mg/L). Monomeric anthocyanins from I.batatas were found to be very stable and not affected by changes in pH than in H. sabdariffa and M. malabathricum. However, degradation index (DI) of H. sabdariffa was the lowest with value of 0.365 ± 0.049 at pH 3.5. The lowest percentage of polymeric color (4.94 ± 0.64) was also shown by H. sabdariffa at pH 2.5 and maintained a deep red color with increasing pH indicating higher color stability compared to M. malabathricum and I. batatas. Overall, natural pigment in H. sabdariffa was found to be the most stable in both monomeric anthocyanin content and chromaticity properties. These results provided information that will further proven the potential usage of H. sabdariffa, M. malabathricum and I. batatas as natural coloring agents to replace the synthetic colorant in food and beverage industries.
    Matched MeSH terms: Ipomoea batatas
  10. Siew-Yi Lee, Siti Aqlima Ahmad, Siti Roslina Mustapha, Janna Ong-Abdullah
    MyJurnal
    Despite wide applications in industries, phenol pollution leads to many health effects, and one of the technologies used to clean up phenol pollution is phytoremediation. The aim of this research was to assess the remediation ability of Ipomoea aquatica Forssk., which is easy to handle and and has a fast growth rate. Plantlet was grown in water spiked with 0.05, 0.10, 0.20, 0.30 and 0.40 g/L phenol, followed by daily observation of the plantlets morphology and tracking of phenol concentration in the water and plantlet extracts via 4-aminoantipyrine (4-AAP) assay. Plantlet’s roots in 0.10 g/L phenol (57.42 ± 1.41 mm) were significantly longer (p < 0.05) than those of the control plantlets (43.57 ± 3.87 mm) in contrast to other phenol concentrations which had stunted roots growth. I. aquatica Forssk. was able to survive with 0.30 g/L phenol despite exhibiting yellowing of leaves and increased sensitivity to scarring on the stems. The plantlets were able to completely remove the phenol from the water spiked with phenol at 0.05 g/L after 12 days of growth. However, the highest average rate of phenol removal was 0.021 g/L/day from water spiked with 0.30 g/L phenol. Phenol analysis on the plantlets’ extracts revealed that I. aquatica Forssk. had degraded the absorbed phenol. This observation is of significant interest as it highlights the
    potential of I. aquatica Forssk. for use as a phytoremediator to clean up phenol contaminated water.
    Matched MeSH terms: Ipomoea
  11. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  12. Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A
    Bioresour Technol, 2010 Mar;101(5):1511-7.
    PMID: 19819130 DOI: 10.1016/j.biortech.2009.09.040
    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate.
    Matched MeSH terms: Ipomoea/physiology*
  13. Al Mutairi AMM, Kabir NA
    Radiat Prot Dosimetry, 2020 Jun 12;188(1):47-55.
    PMID: 31711202 DOI: 10.1093/rpd/ncz256
    Tapioca and sweet potato are the fourth and fifth most consumed crops in Malaysia. The activity concentrations of natural radionuclides in these vegetables were assessed from two regions in Malaysia (Kedah and Penang) along with soil samples using gamma ray spectroscopy. The transfer factors of 226Ra, 232Th and 40K from soil to vegetables were calculated, and a dose assessment was performed. The activity concentrations of 226Ra, 232Th and 40K in soil samples did not show a significant variation with the regions investigated, and the average values obtained, in Bq/kg, (±SD) were as follows: 80 ± 41, 56 ± 12, 516 ± 119, respectively. The respective average activity concentrations in vegetables were as follows, in Bq/kg: (±SD) 2.0 ± 0.5, 6 ± 2, 153 ± 49. The corresponding transfer factors were calculated to be 0.03, 0.11 and 0.31 for 226Ra, 232Th and 40K, respectively. The average annual effective doses due to the exposure from soil and ingestion of vegetables were found to lie within the worldwide ranges.
    Matched MeSH terms: Ipomoea batatas*
  14. AhbiRami R, Zuharah WF, Thiagaletchumi M, Subramaniam S, Sundarasekar J
    J Insect Sci, 2014;14:180.
    PMID: 25368088 DOI: 10.1093/jisesa/ieu042
    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.
    Matched MeSH terms: Ipomoea/chemistry*
  15. Thiagaletchumi M, Zuharah WF, Ahbi Rami R, Fadzly N, Dieng H, Ahmad AH, et al.
    Trop Biomed, 2014 Sep;31(3):466-76.
    PMID: 25382473 MyJurnal
    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P < 0.05). There was no adult emergence observed up to seven days for non-replenishment and first two days for replenishment of water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.
    Matched MeSH terms: Ipomoea/chemistry*
  16. Hamidon NH, Abang Zaidel DN, Mohd Jusoh YM
    Recent Pat Food Nutr Agric, 2020;11(3):202-210.
    PMID: 32031081 DOI: 10.2174/2212798411666200207102051
    BACKGROUND: Pectin is a natural polysaccharide that has been used widely as a stabilizer in food emulsion system.

    OBJECTIVE: This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying properties.

    METHODS: Response surface methodology (RSM) has been utilized to investigate the pectin extracted from sweet potato peels using citric acid as the extracting solvent. Investigation of the effect of different extraction conditions namely temperature (°C), time (min) and solution pH on pectin yield (%) were conducted. A Box-Benhken design with three levels of variation was used to optimize the extraction conditions.

    RESULTS: The optimal conditions determined were temperature 76°C, time 64 min and pH 1.2 with 65.2% yield of pectin. The degree of esterification (DE) of the sweet potato pectin was determined using Fourier Transform Infrared (FTIR) Spectroscopy. The pectin is high-methoxyl pectin with DE of 58.5%. Emulsifying properties of sweet potato pectin were investigated by measuring the zeta-potential, particle size and creaming index with addition of 0.4 and 1.0 wt % pectin to the emulsion.

    CONCLUSION: Extraction using citric acid could improve the pectin yield. Improved emulsion stability was observed with the addition of the sweet potato pectin.

    Matched MeSH terms: Ipomoea batatas/chemistry*
  17. Onwude DI, Hashim N, Abdan K, Janius R, Chen G
    J Sci Food Agric, 2018 Mar;98(4):1310-1324.
    PMID: 28758207 DOI: 10.1002/jsfa.8595
    BACKGROUND: Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying.

    RESULTS: The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95.

    CONCLUSION: Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Ipomoea batatas*
  18. Zuharah WF, Ahbirami R, Dieng H, Thiagaletchumi M, Fadzly N
    PMID: 27253746 DOI: 10.1590/S1678-9946201658044
    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors.
    Matched MeSH terms: Ipomoea/chemistry*
  19. Naomi R, Bahari H, Yazid MD, Othman F, Zakaria ZA, Hussain MK
    Int J Mol Sci, 2021 Oct 06;22(19).
    PMID: 34639164 DOI: 10.3390/ijms221910816
    Hyperglycemia is a condition with high glucose levels that may result in dyslipidemia. In severe cases, this alteration may lead to diabetic retinopathy. Numerous drugs have been approved by officials to treat these conditions, but usage of any synthetic drugs in the long term will result in unavoidable side effects such as kidney failure. Therefore, more emphasis is being placed on natural ingredients due to their bioavailability and absence of side effects. In regards to this claim, promising results have been witnessed in the usage of Ipomoea batatas (I. batatas) in treating the hyperglycemic and dyslipidemic condition. Thus, the aim of this paper is to conduct an overview of the reported effects of I. batatas focusing on in vitro and in vivo trials in reducing high glucose levels and regulating the dyslipidemic condition. A comprehensive literature search was performed using Scopus, Web of Science, Springer Nature, and PubMed databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) Beneficial effect OR healing OR intervention AND (2) sweet potato OR Ipomoea batatas OR traditional herb AND (3) blood glucose OR LDL OR lipid OR cholesterol OR dyslipidemia. Only articles published from 2011 onwards were selected for further analysis. This review includes the (1) method of intervention and the outcome (2) signaling mechanism involved (3) underlying mechanism of action, and the possible side effects observed based on the phytoconstiuents isolated. The comprehensive literature search retrieved a total of 2491 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 23 articles were chosen for further review. The results from these articles indicate that I. batatas has proven to be effective in treating the hyperglycemic condition and is able to regulate dyslipidemia. Therefore, this systematic review summarizes the signaling mechanism, mechanism of action, and phytoconstituents responsible for those activities of I. batatas in treating hyperglycemic based on the in vitro and in vivo study.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  20. Mohd Nawi N, Muhamad II, Mohd Marsin A
    Food Sci Nutr, 2015 Mar;3(2):91-9.
    PMID: 25838887 DOI: 10.1002/fsn3.132
    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
    Matched MeSH terms: Ipomoea batatas
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links