Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Baadu R, Chong KP, Gansau JA, Mohamed Zin MR, Dayou J
    PeerJ, 2023;11:e15682.
    PMID: 37868055 DOI: 10.7717/peerj.15682
    In the 1920s, Lewis Stadler initiated the introduction of permanent improvements to the genetic makeup of irradiated plants. Since then, studies related to breeding mutations have grown, as efforts have been made to expand and improve crop productivity and quality. Stadler's discovery began with x-rays on corn and barley and later extended to the use of gamma-rays, thermal, and fast neutrons in crops. Radiation has since been shown to be an effective and unique method for increasing the genetic variability of species, including rice. Numerous systematic reviews have been conducted on the impact of physical mutagens on the production and grain quality of rice in Southeast Asia. However, the existing literature still lacks information on the type of radiation used, the rice planting materials used, the dosage of physical mutagens, and the differences in mutated characteristics. Therefore, this article aims to review existing literature on the use of physical mutagens in rice crops in Southeast Asian countries. Guided by the PRISMA Statement review method, 28 primary studies were identified through a systematic review of the Scopus, Science Direct, Emerald Insight, Multidisciplinary Digital Publishing, and MDPI journal databases published between 2016 and 2020. The results show that 96% of the articles used seeds as planting materials, and 80% of the articles focused on gamma-rays as a source of physical mutagens. The optimal dosage of gamma-rays applied was around 100 to 250 Gy to improve plant development, abiotic stress, biochemical properties, and nutritional and industrial quality of rice.
    Matched MeSH terms: Mutagens*
  2. Reddy AV, Jaafar J, Umar K, Majid ZA, Aris AB, Talib J, et al.
    J Sep Sci, 2015 Mar;38(5):764-79.
    PMID: 25556762 DOI: 10.1002/jssc.201401143
    Potential genotoxic impurities in pharmaceuticals at trace levels are of increasing concern to both pharmaceutical industries and regulatory agencies due to their possibility for human carcinogenesis. Molecular functional groups that render starting materials and synthetic intermediates as reactive building blocks for small molecules may also be responsible for their genotoxicity. Determination of these genotoxic impurities at trace levels requires highly sensitive and selective analytical methodologies, which poses tremendous challenges on analytical communities in pharmaceutical research and development. Experimental guidance for the analytical determination of some important classes of genotoxic impurities is still unavailable in the literature. Therefore, the present review explores the structural alerts of commonly encountered potential genotoxic impurities, draft guidance of various regulatory authorities in order to control the level of impurities in drug substances and to assess their toxicity. This review also describes the analytical considerations for the determination of potential genotoxic impurities at trace levels and finally few case studies are also discussed for the determination of some important classes of potential genotoxic impurities. It is the authors' intention to provide a complete strategy that helps analytical scientists for the analysis of such potential genotoxic impurities in pharmaceuticals.
    Matched MeSH terms: Mutagens/analysis*
  3. Umar-Tsafe N, Mohamed-Said MS, Rosli R, Din LB, Lai LC
    Mutat Res, 2004 Aug 8;562(1-2):91-102.
    PMID: 15279832
    Goniothalamin (GTN) is a styrylpyrrone derivative from Goniothalamus umbrosus and other Annonaceae species. It has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour and animal cell lines. The compound has also been shown to be active in vivo against DMBA-induced rat mammary tumours and was reported as an anti-fertility agent in rats. The aim of our study was to assess the genotoxicity of GTN in CHO cells using the UKEMS guidelines. A metabolic activation fraction (S9) was prepared according to standard methods. The methylthiazoletetrazolium (MTT) screening assay was then carried out to determine the cytotoxicity index (IC50) of GTN. The average IC50 value was 12.45 (+/- 3.63)microM. The mitotic index (MI) assay was then performed to determine the clastogenicity indices (MI(C25), MI(C50) and MI(C100)) of GTN. The chromosome aberration (CA) induction assay using air-dried metaphase spread was then performed to investigate the clastogenic effects of goniothalamin. Benzo[a]pyrene (BaP) and ethylmethanesulphonate (EMS) were used as positive controls in the presence and absence of S9 metabolic activation, respectively. The anti-genotoxicity effect of GTN was also assessed using a combination of GTN and EMS, and GTN and BaP. Dose-responses of CA frequencies were determined for both, the genotoxicity and anti-genotoxicity effects. GTN on its own and when combined with positive controls, was found to induce and enhance CA, respectively. Chromatid and whole chromosome breaks/gaps, as well as interchanges, endoreduplications and ring chromosomes were the main types of aberration induced by GTN. The overall clastogenic effect of GTN was statistically significant. In conclusion, GTN is potentially a genotoxic or clastogenic substance without any anti-genotoxic properties.
    Matched MeSH terms: Mutagens/pharmacokinetics; Mutagens/toxicity*
  4. Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, et al.
    BMC Oral Health, 2024 Mar 25;24(1):382.
    PMID: 38528501 DOI: 10.1186/s12903-024-04069-0
    AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation.

    MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)).

    RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test.

    CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.

    Matched MeSH terms: Mutagens/pharmacology
  5. Inayat-Hussain SH, Fukumura M, Muiz Aziz A, Jin CM, Jin LW, Garcia-Milian R, et al.
    Environ Int, 2018 08;117:348-358.
    PMID: 29793188 DOI: 10.1016/j.envint.2018.05.010
    BACKGROUND: Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases.

    METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.

    RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.

    CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.

    Matched MeSH terms: Mutagens/analysis*
  6. Shakinah Salleh, Zaiton Ahmad, Affrida Abu Hassan, Yahya Awang, Yutaka Oono
    MyJurnal
    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture
    industry and the lack of new local owned varieties led to this mutation breeding research. The
    objective of this study was to compare the effectiveness of ion beam irradiation in generating
    mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. ‘Reagan Red’. Ion
    beams has become an efficient physical mutagen for mutation breeding. The ray florets and nodal
    explants were irradiated with ion beams at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy.
    The 50% of in vitro shoot regeneration (RD50) for ray florets explants was 2.0 Gy and for nodal
    explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0
    times higher than the nodal explants. The regenerated plantlets were planted in the greenhouse at
    MARDI, Cameron Highlands for morphological screening. Overall performance of survival
    plantlets derived from in vitro nodal and ray floret explants was recorded. The characters studied
    include plant morphology and flowering characteristic. The ray florets explants were found to be
    more sensitive to ion beam irradiation and generated more mutations as compared to nodal
    explants.
    Matched MeSH terms: Mutagens
  7. Md Zin SR, Mohamed Z, Alshawsh MA, Wong WF, Kassim NM
    Exp Biol Med (Maywood), 2018 Feb;243(4):375-385.
    PMID: 29237294 DOI: 10.1177/1535370217748574
    Anastatica hierochuntica L. ( A. hierochuntica), a folk medicinal plant, was evaluated for mutagenic potential via in vitro and in vivo assays. The in vitro assay was conducted according to modified Ames test, while the in vivo study was performed according to Organisation for Economic Co-operation and Development guideline for mammalian erythrocyte micronucleus assay. Four groups ( n= 5 males and 5 females per group) Sprague Dawley rats were randomly chosen as the negative control, positive control (received a single intramuscular injection of cyclophosphamide 50 mg/kg), 1000 and, 2000 mg/kg A. hierochuntica aqueous extracts. All groups except the positive control were treated orally for three days. Findings of the in vitro assay showed mutagenic potential of AHAE at 0.04 and 0.2 mg/ml. However, no mutagenic effect was demonstrated in the in vivo study up to 2000 mg/kg. No significant reduction in the polychromatic and normochromatic erythrocytes ratio was noted in any of the groups. Meanwhile, high micronucleated polychromatic erythrocytes frequency was seen in cyclophosphamide-treated group only. These findings could perhaps be due to insufficient dosage of A. hierochuntica aqueous extracts to cause genetic damage on the bone marrow target cells. Further acute and chronic in vivo toxicity studies may be required to draw pertinent conclusion on the safety aspect of A. hierochuntica aqueous extracts consumption. Impact statement In this paper, we report on the mutagenicity evaluation of Anastatica hierochuntica aqueous extract. This is a significant research in view of the popularity of this herb consumption by the people across the globe despite of limited scientific evidence on its toxicity potential. This study is intended to encourage more extensive related research in order to provide sufficient evidence and guidance for determining its safe dosage.
    Matched MeSH terms: Mutagens/administration & dosage; Mutagens/isolation & purification; Mutagens/pharmacology*
  8. Wee SL, Tan KH
    J Chem Ecol, 2001 May;27(5):953-64.
    PMID: 11471947 DOI: 10.1023/A:1010387020135
    Methyl eugenol (ME), is converted into two major phenylpropanoids, 2-allyl-4,5-dimethoxyphenol and trans-coniferyl alcohol, following consumption by the male fruit fly Bactrocera papayae. Chemical analysis of wild male B. papayae rectal glands, where the compounds are sequestered, revealed the presence of ME metabolites in varying quantities. These phenylpropanoids are shown to be involved in the fruit fly defense both in no-choice and choice feeding tests against the Malayan spiny gecko, Gekko monarchus. After being acclimatized to feeding on fruit flies, geckos consumed significantly fewer ME-fed male flies than controls that consumed all the ME-deprived male flies offered throughout a two-week period. Diagnosis of dissected livers from geckos that consumed ME-fed male flies revealed various abnormalities. These included discoloration and hardening of liver tissue, whitening of the gallbladder, or presence of tumor-like growths in all geckos that consumed ME-fed male flies. Control geckos fed on ME-deprived male flies had healthy livers. When given an alternative prey, geckos preferred to eat untreated house flies, Musca domestica to avoid preying on ME-fed fruit flies.
    Matched MeSH terms: Mutagens/metabolism*; Mutagens/toxicity*
  9. Shakinah Salleh, Affrida Abu Hassan, Shuhaimi Shamsudin, Yahya Awang, Ab. Kahar Sandrang, Abdullah, Thohirah Lee
    MyJurnal
    Chrysanthemum morfolium is an important temperate cut flower and potted plant for Malaysian local market and exporter. Considering chrysanthemum as a popular vegetatively propagated ornamental plant, induce mutations for breeding purposes are more beneficial. Several of physical mutagens have been used in mutation breeding including x-rays, gamma rays and ion beams. Gamma rays and ion beams are from two different linear energy transfer (LET) which are low and high, respectively. The objective of this study was to compare the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutations on nodal explants of Chrysanthemum morifblium cv. Reagan Red'. The nodal explants were irradiated with acute gamma (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 Gy) and ion beam (0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy). The optimal dose for in vitro shoot regeneration using acute gamma was in the range of 10 to .15.0Gy and for ion beam was between 3.5 to 4.OGv. Relative biological effectiveness for ion beam was found 3.75 higher than the acute gamma. The regenerated plantlets were planted in the greenhouse at MARDI, Cameron Highland for morphological screening. The highest frequency of flower colour mutation for acute gamma was 77.8% whilst for ion beam were between 42.3 to 58.3%.
    Matched MeSH terms: Mutagens
  10. Noriah Jamal, Bo, Nelly Nai Lee, Rahimah Abdul Rahim, Noraisyah Yusof, Yahaya Talib, Hasmadi Hassan, et al.
    MyJurnal
    The blooming use of ionizing radiation in industry, research, agriculture, medicine and nuclear industry increases the risk of overexposure for radiation workers as well as members of the public. Ionizing radiation is a strong clastogen, causing chromosome breakage, and resulting in cytogenetic aberrations in exposed cells. Cytogenetic analysis of human blood lymphocytes has been widely used as the biological technique for quantifying radiation dose in man. In the investigation of radiation accident, it is important to estimate the dose absorbed by the exposed person in order for the attending medical doctor to plan for their therapy. This paper reviews the current status on cytogenetic biodosimetry methods for radiation dose assessment.
    Matched MeSH terms: Mutagens
  11. Chiew, Miao Si, Lai, Kok Song, Sobri Hussein, Janna Ong Abdullah
    MyJurnal
    Stevia rebaudiana Bertoni in the Asteraceae family is commercially valuable and cultivated throughout the world due to the great demand for its steviol glycosides (SGs) contents particularly rebaudioside A. Previous studies confirmed that maximal content of SGs in stevia was achieved at or just before flowering, and delayed flowering with long days provide longer duration for steviol glycosides accumulation. However, there is no suitable stevia variety to be cultivated in Malaysia due to her short day length. Mutation induction, including gamma irradiation, had been shown to be useful for generating genetic variations as well as developing new plant varieties from which desired mutants were successfully selected. The use of mutagens, both physical and chemical, has helped in creating mutants that expressed the selected desirable traits. This paper presents some selected essential data available in extant scientific studies on stevia with the focus on application of gamma irradiation on stevia. Both established achievements and recent publications of gamma radiation on stevia were reviewed. Emphasis is on the exceptional potential of stevia through induced mutation approach especially by using gamma rays.
    Matched MeSH terms: Mutagens
  12. Nor Yusliza Kamaruddin, Shamsiah Abdullah
    MyJurnal
    This study looked at mutagenic effectiveness of gamma rays d on two varieties of Zingiber officinale Roscoe: Bentong and Tanjung Sepat. The rhizomes were exposed to different doses (0, 5, 7, 9, 11, 13 and 15 Gy) using Caesium-137 as source of the gamma rays. The effect of different gamma doses on the crude fibre composition of irradiated ginger was studied and genetic variability was assessed using molecular marker technique, RAPD. Findings showed different doses of gamma rays could induce variability in these two ginger varieties and the effect was found to be variety-dependent. Bentong variety irradiated with 9 Gy recorded 8.53% of crude fibre composition while Tanjung Sepat irradiated ginger with 5 Gy recorded 8.70% of crude fibre which gave the lowest composition compared with other irradiated ginger. A total of nine different arbitrary decamers were used as primers to amplify DNA from mutant plant material to assess their polymorphism level of ginger mutant lines. Polymorphism of all mutant lines was 97.62% indicating that there were significant changes in genetic sequences in irradiated ginger genotypes.
    Matched MeSH terms: Mutagens
  13. Tan XL, Othman RY, Teo CH
    3 Biotech, 2020 Apr;10(4):183.
    PMID: 32257739 DOI: 10.1007/s13205-020-02176-7
    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.
    Matched MeSH terms: Mutagens
  14. Wesam RK, Ghanya AN, Mizaton HH, Ilham M, Aishah A
    Asian Pac J Trop Med, 2013 Oct;6(10):811-6.
    PMID: 23870471 DOI: 10.1016/S1995-7645(13)60143-1
    OBJECTIVE: To investigate the cytotoxicity and the genotoxicity of standardized aqueous of dry leaves of Erythroxylum cuneatum (E. cuneatum) in human HepG2 and WRL68 cells.

    METHODS: The cytotoxicity of E. cuneatum extract was evaluated by both MTS and LDH assays. Genotoxicity study on E. cuneatum extract was assessed by the single cell gel electrophoresis (comet assay). The protective effect of E. cuneatum against menadione-induced cytotoxicity was also investigated.

    RESULTS: Results from this study showed that E. cuneatum extract exhibited cytotoxic activities towards the cells with IC50 value of (125±12) and (125±14) μg/mL for HepG2 and WRL68 cells respectively, after 72 h incubation period as determined by MTS assay. LDH leakage was detected at (251±19) and (199.5±12.0) μg/mL for HepG2 and WRL68 respectively. Genotoxicity study results showed that treatment with E. cuneatum up to 1 mg/mL did not cause obvious DNA damage in WRL68 and HepG2 cells. Addition of E. cunaetum did not show significant protection towards menadione in WRL68 and HepG2 Cells.

    CONCLUSIONS: E. cuneatum standardized aqueous extract might be developed in order to establish new pharmacological possibilities for its application.

    Matched MeSH terms: Mutagens/toxicity*
  15. Yuet Ping K, Darah I, Yusuf UK, Yeng C, Sasidharan S
    Molecules, 2012 Jun 26;17(7):7782-91.
    PMID: 22735780 DOI: 10.3390/molecules17077782
    The potential genotoxic effects of methanolic extracts of Euphorbia hirta which is commonly used in traditional medicine to treat a variety of diseased conditions including asthma, coughs, diarrhea and dysentery was investigated using Allium cepa assay. The extracts of 125, 250, 500 and 1,000 µg/mL were tested on root meristems of A. cepa. Ethylmethanesulfonate was used as positive control and distilled water was used as negative control. The result showed that mitotic index decreased as the concentrations of E. hirta extract increased. A dose-dependent increase of chromosome aberrations was also observed. Abnormalities scored were stickiness, c-mitosis, bridges and vagrant chromosomes. Micronucleated cells were also observed at interphase. Result of this study confirmed that the methanol extracts of E. hirta exerted significant genotoxic and mitodepressive effects at 1,000 µg/mL.
    Matched MeSH terms: Mutagens/toxicity
  16. Al-Shami SA, Rawi CS, Ahmad AH, Nor SA
    Toxicol Ind Health, 2012 Sep;28(8):734-9.
    PMID: 22025505 DOI: 10.1177/0748233711422729
    The genotoxic effects of increasing concentrations (below lethal concentration [LC₅₀]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal-Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
    Matched MeSH terms: Mutagens/toxicity*
  17. Loh DS, Er HM, Chen YS
    J Ethnopharmacol, 2009 Dec 10;126(3):406-14.
    PMID: 19778596 DOI: 10.1016/j.jep.2009.09.025
    Euphorbia hirta (E. hirta) is a weed commonly found in tropical countries and has been used traditionally for asthma, bronchitis and conjunctivitis. However, one of the constituents in this plant, quercetin, was previously reported to be mutagenic. This work aimed to determine the level of quercetin in the aqueous and methanol plant extracts and to investigate the mutagenic effects of quercetin and the extracts in the Ames test utilising the mutant Salmonella typhimurium TA98 and TA100 strains. The antimutagenic activity of Euphorbia hirta aqueous and methanol extracts was also studied in Salmonella typhimurium TA98. HPLC analyses showed that quercetin and rutin, a glycosidic form of quercetin, were present in the acid-hydrolysed methanol extract and non-hydrolysed methanol extract respectively. The quercetin concentration was negligible in both non-hydrolysed and acid-hydrolysed aqueous extracts. The total phenolic contents in Euphorbia hirta were determined to be 268 and 93 mg gallic acid equivalent (GAE) per gram of aqueous and methanol extracts, respectively. Quercetin (25 microg/mL) was found to be strongly mutagenic in Salmonella typhimurium TA98 in the absence and presence of S-9 metabolic activation. However, both the aqueous and methanol extracts did not demonstrate any mutagenic properties when tested with Salmonella typhimurium TA98 and TA100 strains at concentrations up to 100 microg/mL in the absence and presence of S-9 metabolic activation. In the absence of S-9 metabolic activation, both the extracts were unable to inhibit the mutagenicity of the known mutagen, 2-nitrofluorene, in Salmonella typhimurium TA98. On the other hand, the aqueous extracts at 100 microg/mL and methanol extracts at 10 and 100 microg/mL exhibited strong antimutagenic activity against the mutagenicity of 2-aminoanthracene, a known mutagen, in the presence of S-9 metabolic activating enzymes. The results indicated that these extracts could modulate the xenobiotic metabolising enzymes in the liver at the higher concentrations.
    Matched MeSH terms: Mutagens/toxicity*
  18. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2009 May 30;164(2-3):1316-24.
    PMID: 18977086 DOI: 10.1016/j.jhazmat.2008.09.042
    The effects of three preparation variables: CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO(2) activation temperature of 814 degrees C, CO(2) activation time of 1.9h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m(2)/g, total pore volume of 0.6 cm(3)/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.
    Matched MeSH terms: Mutagens/isolation & purification
  19. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2009 May 30;164(2-3):473-82.
    PMID: 18818013 DOI: 10.1016/j.jhazmat.2008.08.025
    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.
    Matched MeSH terms: Mutagens/isolation & purification
  20. D'Souza UJ, Zain A, Raju S
    Mutat Res, 2005 Mar 7;581(1-2):187-90.
    PMID: 15725618
    The genotoxic effect of the herbicide paraquat was studied in rat bone-marrow by means of the micronucleus assay. Paraquat at dose levels of 6, 15 and 30 mg/kg body weight was given to rats in a single application via the dermal route. Marrow was collected at 24, 48 and 72 h after the application. The micronucleus assay was done as recommended by standard procedures. Paraquat gave rise to an increase in the number of micronuclei in a dose-dependent manner. The number of micronucleated polychromatic erythrocytes showed a maximum at 48 h and the toxicity was further prolonged, as there was no complete recovery at 72 h. These findings suggest a genotoxic effect of paraquat even after exposure via dermal application.
    Matched MeSH terms: Mutagens/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links