METHODS: High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay.
RESULTS: CO(2) levels of 800 μmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO(2) conditions.
CONCLUSIONS: The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO(2) concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO(2) levels.
METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.
CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.
METHODS: The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining.
RESULTS: The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and SKOV-3 cells after treatment with the cytotoxic extracts and fractions which were indicative of cell apoptosis. Methyl palmitate and methyl stearate were identified in the hexane leaf extract by GC-MS analysis.
CONCLUSIONS: The data obtained from the current study demonstrated that the cell death induced by cytotoxic extracts and fractions of A. scabra may be due to apoptosis induction which was characterized by apoptotic morphological changes and DNA fragmentation. The active ingredients in the leaf sub-fraction VLC9 and rhizome fraction RC5 may lead to valuable compounds that have the ability to kill cancer cells but not normal cells.
METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.
RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.
CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.