Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Sama Naziyah Shaban, Solachuddin Icwan, Muhamamd Taher Bakhtiar
    MyJurnal
    Squamous cell carcinoma is reported as one of the most common types of cancer with
    increasing numbers of occurrence. Luvunga scandens is a plant possessing many bioactivities and
    general health effects, yet its anti-proliferative effect is under reported and need to be
    scientifically evaluated. (Copied from article).
    Matched MeSH terms: Rutaceae
  2. Tan LY, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4339-51.
    PMID: 22666033 DOI: 10.3390/s120404339
    Quorum sensing regulates bacterial virulence determinants, therefore making it an interesting target to attenuate pathogens. In this work, we screened edible, endemic plants in Malaysia for anti-quorum sensing properties. Extracts from Melicope lunu-ankenda (Gaertn.) T. G. Hartley, a Malay garden salad, inhibited response of Chromobacterium violaceum CV026 to N-hexanoylhomoserine lactone, thus interfering with violacein production; reduced bioluminescence expression of E. coli [pSB401], disrupted pyocyanin synthesis, swarming motility and expression of lecA::lux of Pseudomonas aeruginosa PAO1. Although the chemical nature of the anti-QS compounds from M. lunu-ankenda is currently unknown, this study proves that endemic Malaysian plants could serve as leads in the search for anti-quorum sensing compounds.
    Matched MeSH terms: Rutaceae/chemistry*
  3. Parhoodeh P, Rahmani M, Hashim NM, Sukari MA, Lian GE
    Molecules, 2011 Mar 07;16(3):2268-73.
    PMID: 21383663 DOI: 10.3390/molecules16032268
    During our phytochemical investigation of Haplophyllum villosum (Rutaceae), a perennial herb from Iran, a new 4,8-diaryl-3,7-dioxobicyclo-(3,3,0)-octane type lignan, eudesmin A (1), together with four known compounds--eudesmin (2), haplamine (3), umbelliferone (4) and scopoletin (5)--were isolated from aerial parts of the plant. The structures of the compounds were elucidated using NMR spectral analysis (¹H-NMR, ¹³C-NMR, HSQC, COSY and HMBC) as well as UV, IR and MS spectra and comparison with previously reported data.
    Matched MeSH terms: Rutaceae/chemistry*
  4. Kathirvalu G, Chandramathi S, S A A, Atiya N, Begum S, Christophe W, et al.
    Trop Biomed, 2023 Jun 01;40(2):152-159.
    PMID: 37650400 DOI: 10.47665/tb.40.2.004
    Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii.
    Matched MeSH terms: Rutaceae/chemistry
  5. Taher M, Susanti D, Abd Hamid S, Edueng K, Jaffri JM, Adina AB, et al.
    Pak J Pharm Sci, 2014 Jan;27(1):179-81.
    PMID: 24374446
    An alkaloid from Maclurodendron porteri has been isolated and characterized. Extraction process was conducted by acid-base extraction method followed by column chromatography. The structure was established by nuclear magnetic resonance spectroscopy and mass spectrometry. The compound was identified as haplophytin B which occurs commonly in the Rutaceae family. However, this is the first time this alkaloid was isolated and reported from the species. The compound showed no inhibition against Staphylococus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherichia coli and no cytotoxic activity against H199 and A549 cell lines.
    Matched MeSH terms: Rutaceae/chemistry*
  6. Epifano F, Fiorito S, Genovese S
    Phytochemistry, 2013 Nov;95:12-8.
    PMID: 23920228 DOI: 10.1016/j.phytochem.2013.07.013
    The genus Acronychia (Rutaceae) comprise 44 species, most of which are represented by shrubs and small trees, distributed in a wide geographical area of South-Eastern Asia comprising China, India, Malaysia, Indonesia, Australia, and the islands of the western Pacific Ocean. Most of the species of the genus Acronychia have been used for centuries as natural remedies in the ethnomedical traditions of indigenous populations as anti-microbial, anti-fungal, anti-spasmodic, stomachic, anti-pyretic, and anti-haemorragic agent. Moreover fruits and aerial parts are used as food in salads and condiments, while the essential oil obtained from flowers and leaves has been employed in cosmetics production. Phytochemicals isolated from Acronychia spp. include acetophenones, quinoline and acridone alkaloids, flavonoids, cinnamic acids, lignans, coumarins, steroids, and triterpenes. The reported biological activities of the above mentioned natural compounds refer to anti-plasmodial, anti-cancer, anti-oxidant, anti-inflammatory, anti-fungal, and neuroprotective effects. The aim of this review is to examine in detail from a phytochemical and pharmacologically point of view what is reported in the current literature about the properties of phytopreparations or individual active principles obtained from plants belonging to the Acronychia genus.
    Matched MeSH terms: Rutaceae/chemistry*
  7. Al Zoubi OM, Normah MN
    Cryo Letters, 2012 May-Jun;33(3):241-51.
    PMID: 22825791
    Excised embryonic axes from seeds of three taxa, namely, Citrus suhuiensis cv. limau madu, Citrumelo (Citrus paradisi x Poncirus trifoliate) and Fortunella polyandra, were desiccated in a laminar airflow, over silica gel, and ultra-rapidly. Desiccation sensitivity (WC50) was estimated for each taxon using the quantal response model. High desiccation tolerance (WC50 = 0.11 g water per g dry mass. g/gdw) was observed for limau madu embryonic axes desiccated in a laminar airflow and ultra-rapidly (WC50 =0.10 g/gdw). Desiccation tolerance was substantially lower (WC50 = 0.19 g/gdw) for silica gel dehydration. Similarly, high desiccation tolerance (WC50 = 0.15 g/gdw) was associated with F. polyandra embryonic axes when desiccated in a laminar airflow, while a lower desiccation tolerance (WC50 = 0.17 g/gdw) was observed with silica gel dehydration. Ultra-rapid desiccation led to the highest desiccation tolerance (WC50 = 0.14 g/gdw). The dehydration rate, however, had no influence on desiccation tolerance (WC50 ~ 0.14 g/gdw) for Citrumelo embryonic axes. After each desiccation period, embryonic axes were directly immersed in liquid nitrogen (LN) followed by rapid rewarming. Normal seedling recovery of 80 to 83% for excised embryonic axes of limau madu was observed for laminar airflow and ultra-rapid dehydration, but for silica gel dehydration, 57% recovery was obtained. Similarly, for Citrumelo, high recoveries of 100% and 97% were obtained from axes desiccated in a laminar airflow and using ultra-rapid dehydration, respectively, whereas a lower value was associated with silica gel dehydration (80%). For F. polyandra, 50% recovery was obtained both for laminar airflow and ultra-rapid dehydration, while much lower recovery (43%) was associated with silica gel dehydration. Regardless of the drying method employed, axis survival percentages following exposure to LN were commensurate with the desiccation sensitivity pattern.
    Matched MeSH terms: Rutaceae/embryology*
  8. Lukaseder B, Vajrodaya S, Hehenberger T, Seger C, Nagl M, Lutz-Kutschera G, et al.
    Phytochemistry, 2009 May;70(8):1030-7.
    PMID: 19535116 DOI: 10.1016/j.phytochem.2009.05.007
    Fifteen prenylated or geranylated flavanones and flavanonols were isolated from the leaf extracts of different Glycosmis species collected in Thailand and Malaysia. All structures were elucidated by spectroscopic methods, especially 1D and 2D NMR. Six compounds were described for the first time and two were only known so far as synthetic products. The chemotaxonomic significance of flavanoid accumulation within the genus Glycosmis is highlighted.
    Matched MeSH terms: Rutaceae/chemistry*
  9. Shaari K, Safri S, Abas F, Lajis NH, Israf DA
    Nat Prod Res, 2006 May 10;20(5):415-9.
    PMID: 16644538
    The leaves of Melicope ptelefolia (Rutaceae) afforded a new acetophenone named 2,4,6-trihydroxy-3-geranylacetophenone. The structure of the compound was established by mass and NMR spectroscopy.
    Matched MeSH terms: Rutaceae*
  10. Asmah Susidarti R, Rahmani M, Ismail HB, Sukari MA, Yun Hin TY, Ee Cheng Lian G, et al.
    Nat Prod Res, 2006 Feb;20(2):145-51.
    PMID: 16319008
    A new coumarin, 8,4''-dihydroxy-3'',4''-dihydrocapnolactone-2',3'-diol (1) and two known triterpenes, 5(6)-gluten-3-one (2) and 5(6)-gluten-3alpha-ol (3) were isolated from the leaves of Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia and their structures were characterized by spectroscopic methods.
    Matched MeSH terms: Rutaceae/chemistry*
  11. Rahmani M, Susidarti RA, Ismail HB, Sukari MA, Hin TY, Lian GE, et al.
    Phytochemistry, 2003 Oct;64(4):873-7.
    PMID: 14559284
    In a continuation of our study of the Rutaceae, detailed chemical investigation on Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia gave four new coumarins. The structures of the coumarins have been fully characterised by spectroscopic methods as 3",4"-dihydrocapnolactone 1, 2',3'-epoxyisocapnolactone 2, 8-hydroxyisocapnolactone-2',3'-diol 3 and 8-hydroxy-3",4"-dihydrocapnolactone-2',3'-diol 4.
    Matched MeSH terms: Rutaceae/chemistry*
  12. Ab. Karim, M.S., Nasouddin, S.S., Othman, M., Mohd Adzahan, N., Hussin, S.R., Khozirah, S.
    MyJurnal
    Melicope ptelefolia (MP) is one of the alternative herbal resources which have a great potential to be marketed worldwide. Because of its exploratory nature, this study used qualitative research methodology, which is natural and highly interpretive in order to gain consumer insights. This preliminary qualitative study used an in-depth personal interview approach for data collection. Informants for this study were 30 regular consumers of MP, aged from 18 years old and above. From the findings, it is reported that MP had a slightly bitter taste, crunchy young leaves, pungent, and lemon-lime aroma. In terms of its physical characteristics, it is said that MP has trifoliate, green, thick, broad leaves and has small white and greenish flowers. Respondents have varying levels of awareness and knowledge regarding MP but most of them believed that medicinal products can be produced from this herb. Respondents also stressed the importance of scientific research to properly develop MP into medicinal products and turn it into alternative treatment that has commercial values in the market.
    Matched MeSH terms: Rutaceae
  13. Komala I, Rahmani M, Sukari MA, Mohd Ismail HB, Cheng Lian GE, Rahmat A
    Nat Prod Res, 2006 Apr;20(4):355-60.
    PMID: 16644530
    Investigation on the leaves of Melicope bonwickii (F.Muell.) T.Hartley (Rutaceae) afforded a new 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (1) together with the known 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (2), evellerine (3) kokusaginine (4) and an amide aurantiamide acetate (5). Compounds 1 and 2 showed significant activity against cervical cell lines (Hela).
    Matched MeSH terms: Rutaceae/classification*; Rutaceae/chemistry*
  14. Goldsberry A, Dinner A, Hanke CW
    J Drugs Dermatol, 2014 Mar;13(3):306-7.
    PMID: 24595576
    Limonia acidissima or Hesperethusa crenulata is a common tree in Southeast Asia. It is indigenous to the Republic of Myanmar (formerly Burma) as well as India, Sri Lanka, Java, and Pakistan. In English, the common names for Limonia acidissima are sandalwood, wood-apple, elephant-apple, monkey fruit, and curd fruit tree. The plant has a number of different names in different languages including bal or bael in Assamese, bael in Bengali, kaitha in Hindi, belingai in Malaysia, and thanaka in Burmese. Unique to the Burmese people, thanaka has been used as a cosmetic product for over 2000 years. Mention of thanaka has been traced back to ancient Burmese lyrics, and relics of equipment used by ancient royalty to grind thanaka can be found in museums.
    Matched MeSH terms: Rutaceae/chemistry*
  15. Beniddir MA, Le Borgne E, Iorga BI, Loaëc N, Lozach O, Meijer L, et al.
    J Nat Prod, 2014 May 23;77(5):1117-22.
    PMID: 24798019 DOI: 10.1021/np400856h
    Two new acridone alkaloids, chlorospermines A and B (1 and 2), were isolated from the stem bark of Glycosmis chlorosperma, together with the known atalaphyllidine (3) and acrifoline (4), by means of bioguided isolation using an in vitro enzyme assay against DYRK1A. Acrifoline (4) and to a lesser extent chlorospermine B (2) and atalaphyllidine (3) showed significant inhibiting activity on DYRK1A with IC50's of 0.075, 5.7, and 2.2 μM, respectively. Their selectivity profile was evaluated against a panel of various kinases, and molecular docking calculations provided structural details for the interaction between these compounds and DYRK1A.
    Matched MeSH terms: Rutaceae/chemistry*
  16. Kassim NK, Rahmani M, Ismail A, Sukari MA, Ee GC, Nasir NM, et al.
    Food Chem, 2013 Aug 15;139(1-4):87-92.
    PMID: 23561082 DOI: 10.1016/j.foodchem.2013.01.108
    The ethyl acetate and methanol bark extracts of Melicope glabra were evaluated for their antioxidant capacities by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and β-carotene bleaching/linoleic acid system. Both extracts exhibited strong inhibition against the DPPH radical (IC50 values of 24.81 and 13.01 μg ml(-1), respectively) and strong antioxidant activity in β-carotene bleaching assay. Both samples were found to have high phenolic content with values of 39 and 44 mg GAE/g as indicated by Follin-Ciocalteau's reagent. Antioxidant TLC assay-guided isolation on the methanol extract led to the isolation of a new pyranocoumarin, glabranin (1), umbelliferone (2), scopoletin (3) and sesamin (4), and their structures were determined by spectroscopy. Compounds (1-3) showed significant activities on DPPH free radical with the IC50 of 240.20, 810.02 and 413.19 μg ml(-1), respectively. However, in β-carotene bleaching assay, sesamin (4) showed higher inhibitory activity (1 mg ml(-1), 95%) than glabranin (1) (1 mg ml(-1), 74%), whilst umbelliferone (2) and scopoletin (3) were slightly pro-oxidant.
    Matched MeSH terms: Rutaceae/chemistry*
  17. Yahayu MA, Rahmani M, Hashim NM, Amin MA, Ee GC, Sukari MA, et al.
    Molecules, 2011 May 27;16(6):4401-7.
    PMID: 21623311 DOI: 10.3390/molecules16064401
    Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine and 7-hydroxynoracronycine, and a known acridone, atalaphyllidine. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.
    Matched MeSH terms: Rutaceae/chemistry*
  18. Shaari K, Zareen S, Akhtar MN, Lajis NH
    Nat Prod Commun, 2011 Mar;6(3):343-8.
    PMID: 21485271
    Phytochemical investigations on the methanolic extract of Melicope ptelefolia Champ ex Benth. resulted in the isolation of three new compounds, identified as 3beta-stigmast-5-en-3-ol butyl tridecanedioate (melicoester) (1), (2Z, 6Z, 10Z, 14Z, 18Z, 22Z, 26E)-3', 7', 11', 15', 19', 23', 27', 31'-octamethyldotriaconta-2, 6, 10, 14, 18, 22, 26, 30-octadecanoate (melicopeprenoate) (2) and p-O-geranyl-7"-acetoxy coumaric acid (3). The compounds were isolated along with twenty-one other known compounds, lupeol (4), oleanolic acid (5), kokusaginine (6) genistein (7), p-O-geranyl coumaric acid (8), 4-stigmasten-3-one (9), 3beta-hydroxystigma-5-en-7-one (10) cis-phytyl palmitate (11), dodecane, dodecan-1-ol, ceryl alcohol, hentriacontanoic acid, eicosane, n-amyl alcohol, caprylic alcohol, octatriacontane, nonatriacontane, hexatriencontan-1-ol, methyl octacosanoate, beta-sitosterol, beta-sitosterol glucoside. Structures of all the compounds were established on the basis of MS and 1D and 2D NMR spectral data, as well as comparison with reported data.
    Matched MeSH terms: Rutaceae/chemistry*
  19. Chung LY, Yap KF, Goh SH, Mustafa MR, Imiyabir Z
    Phytochemistry, 2008 May;69(7):1548-54.
    PMID: 18334259 DOI: 10.1016/j.phytochem.2008.01.024
    The bark extract of Melicope subunifoliolata (Stapf) T.G. Hartley showed competitive muscarinic receptor binding activity. Six polymethoxyflavones [melibentin (1); melisimplexin (3); 3,3',4',5,7-pentamethoxyflavone (4); meliternatin (5); 3,5,8-trimethoxy-3',4',6,7-bismethylenedioxyflavone (6); and isokanugin (7)] and one furanocoumarin [5-methoxy-8-geranyloxypsoralen (2)] were isolated from the bark extract. Compounds 2 and 6 were isolated for the first time from M. subunifoliolata. The methoxyflavones (compounds 1, 3, 4, 5, 6, and 7) show moderate inhibition in a muscarinic receptor binding assay, while the furanocoumarin (compound 2) is inactive. The potency of the methoxyflavones to inhibit [(3)H]NMS-muscarinic receptor binding is influenced by the position and number of methoxy substitution. The results suggest these compounds are probably muscarinic modulators, agonists or partial agonists/antagonists.
    Matched MeSH terms: Rutaceae/chemistry*
  20. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Rutaceae*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links