OBJECTIVE: The aim of this study was to identify types of image repair strategies utilized by the Malaysian government in their communication about COVID-19 in the media and analyze public responses to these messages on social media.
METHODS: Content analysis was employed to analyze 120 media statements and 382 comments retrieved from Facebook pages of 2 mainstream newspapers-Berita Harian and The Star. These media statements and comments were collected within a span of 6 weeks prior to and during the first implementation of Movement Control Order by the Malaysian Government. The media statements were analyzed according to Image Repair Theory to categorize strategies employed in government communications related to COVID-19 crisis. Public opinion responses were measured using modified lexicon-based sentiment analysis to categorize positive, negative, and neutral statements.
RESULTS: The Malaysian government employed all 5 Image Repair Theory strategies in their communications in both newspapers. The strategy most utilized was reducing offensiveness (75/120, 62.5%), followed by corrective action (30/120, 25.0%), evading responsibilities (10/120, 8.3%), denial (4/120, 3.3%), and mortification (1/120, 0.8%). This study also found multiple substrategies in government media statements including denial, shifting blame, provocation, defeasibility, accident, good intention, bolstering, minimization, differentiation, transcendence, attacking accuser, resolve problem, prevent recurrence, admit wrongdoing, and apologize. This study also found that 64.7% of public opinion was positive in response to media statements made by the Malaysian government and also revealed a significant positive association (P=.04) between image repair strategies utilized by the Malaysian government and public opinion.
CONCLUSIONS: Communication in the media may assist the government in fostering positive support from the public. Suitable image repair strategies could garner positive public responses and help build trust in times of crisis.
OBJECTIVE: The aim of this study was to explore public sentiments and emotions toward the LSSR and identify issues, fear, and reluctance to observe this restriction among the Indonesian public.
METHODS: This study adopts a sentiment analysis method with a supervised machine learning approach on COVID-19-related posts on selected media platforms (Twitter, Facebook, Instagram, and YouTube). The analysis was also performed on COVID-19-related news contained in more than 500 online news platforms recognized by the Indonesian Press Council. Social media posts and news originating from Indonesian online media between March 31 and May 31, 2020, were analyzed. Emotion analysis on Twitter platform was also performed to identify collective public emotions toward the LSSR.
RESULTS: The study found that positive sentiment surpasses other sentiment categories by 51.84% (n=1,002,947) of the total data (N=1,934,596) collected via the search engine. Negative sentiment was recorded at 35.51% (686,892/1,934,596) and neutral sentiment at 12.65% (244,757/1,934,596). The analysis of Twitter posts also showed that the majority of public have the emotion of "trust" toward the LSSR.
CONCLUSIONS: Public sentiment toward the LSSR appeared to be positive despite doubts on government consistency in executing the LSSR. The emotion analysis also concluded that the majority of people believe in LSSR as the best method to break the chain of COVID-19 transmission. Overall, Indonesians showed trust and expressed hope toward the government's ability to manage this current global health crisis and win against COVID-19.
METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST.
RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.