Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Wong WL, Tan WB, Lim LH
    J. Helminthol., 2006 Mar;80(1):87-90.
    PMID: 16469180
    Hard structures of helminths have often been used for taxonomic identification but are usually not clearly defined when treated with conventional methods such as ammonium picrate-glycerin for monogeneans and glycerin for nematodes. The present study reports a rapid and simple technique to better resolve the hard parts of selected monogeneans and nematodes using 5-10% alkaline sodium dodecyl sulphate (SDS). In comparison with established methods, SDS-treated worms become more transparent. In monogeneans treated with SDS, clear details of the hooks, hook filaments, anchors, bars and the sclerotized copulatory organs could be observed. In SDS-treated nematodes, spicules and ornamentations of the buccal capsules could be clearly seen.
    Matched MeSH terms: Sodium Dodecyl Sulfate*
  2. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1998 Dec 15;265(2):381-4.
    PMID: 9882418
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry*
  3. Lim YY, Lim KH
    J Colloid Interface Sci, 1997 Dec 01;196(1):116-9.
    PMID: 9441659
    Micellar properties of binary mixed surfactants of a surface active mixed copper(II) chelate, [Cu(C12-tmed)(acac)Cl] (where C12-tmed is N,N,N'-trimethyl-N'-dodecylethylenediamine) with three common surfactants, viz. sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monododecyl ether (C12E8), were investigated by surface tensiometry, ESR, and UV-visible absorption techniques. The surface tension data were treated with Rubingh's method for mixed micelle formation and Rosen's method for mixed monolayer formation at the aqueous solution/air interface. It was found that in the mixed micelle there is strong attractive interaction between cationic copper surfactant and anonic dodecyl sulfate while there is almost ideal mixing between copper surfactant and CTAB and C12E8. From the ESR and UV-visible studies, a mixed block-type arrangement of head groups is proposed. Copyright 1997 Academic Press. Copyright 1997Academic Press
    Matched MeSH terms: Sodium Dodecyl Sulfate
  4. Miah MA, Elzaki MEA, Husna A, Han Z
    Arch Insect Biochem Physiol, 2019 Feb;100(2):e21525.
    PMID: 30511429 DOI: 10.1002/arch.21525
    Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  5. Farade RA, Abdul Wahab NI, Mansour DA, Azis NB, Bt Jasni J, Soudagar MEM, et al.
    Materials (Basel), 2020 Jun 04;13(11).
    PMID: 32512926 DOI: 10.3390/ma13112569
    Sustainable materials, such as vegetable oils, have become an effective alternative for liquid dielectrics in power transformers. However, currently available vegetable oils for transformer application are extracted from edible products with a negative impact on food supply. So, it is proposed in this study to develop cottonseed oil (CSO) as an electrical insulating material and cooling medium in transformers. This development is performed in two stages. The first stage is to treat CSO with tertiary butylhydroquinone (TBHQ) antioxidants in order to enhance its oxidation stability. The second and most important stage is to use the promising graphene oxide (GO) nanosheets to enhance the dielectric and thermal properties of such oil through synthesizing GO-based CSO nanofluids. Sodium dodecyl sulfate (SDS) surfactant was used as surfactant for GO nanosheets. The nanofluid synthesis process followed the two-step method. Proper characterization of GO nanosheets and prepared nanofluids was performed using various techniques to validate the structure of GO nanosheets and their stability into the prepared nanofluids. The considered weight percentages of GO nanosheets into CSO are 0.01, 0.02, 0.03 and 0.05. Dielectric and thermal properties were comprehensively evaluated. Through these evaluations, the proper weight percentage of GO nanosheets was adopted and the corresponding physical mechanisms were discussed.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  6. Wan Ibrahim WA, Arsad SR, Maarof H, Sanagi MM, Aboul-Enein HY
    Chirality, 2015 Mar;27(3):223-7.
    PMID: 25523071 DOI: 10.1002/chir.22416
    This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6-tri-O-methyl)-β-cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5-s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry
  7. Mukhopadhyay S, Mukherjee S, Hashim MA, Sen Gupta B
    Chemosphere, 2015 Jan;119:355-362.
    PMID: 25061940 DOI: 10.1016/j.chemosphere.2014.06.087
    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry
  8. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Sodium Dodecyl Sulfate/metabolism*
  9. Wan Ibrahim WA, Abd Wahib SM, Hermawan D, Sanagi MM, Aboul-Enein HY
    Chirality, 2012 Mar;24(3):252-4.
    PMID: 22271616 DOI: 10.1002/chir.21990
    A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) technique has been developed for enantioseparation of vinpocetine using an inexpensive 2-hydroxypropyl-β-CD (HP-β-CD) as the chiral selector (CS). The best chiral separation was achieved using 40 mM HP-β-CD as the CS in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM sodium dodecyl sulfate (SDS) at a separation temperature and separation voltage of 25°C and 25 kV, respectively. To the author's best knowledge, this is the first CD-MEKC study able to successfully separate the four stereoisomer of vinpocetine in separation time of 9.5 min and resolution of 1.04-3.87.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry
  10. Shukor MY, Husin WS, Rahman MF, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):129-34.
    PMID: 20112874
    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively.
    Matched MeSH terms: Sodium Dodecyl Sulfate/metabolism*
  11. Ramimoghadam D, Hussein MZ, Taufiq-Yap YH
    Int J Mol Sci, 2012;13(10):13275-93.
    PMID: 23202952 DOI: 10.3390/ijms131013275
    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry*
  12. Ibrahim WA, Hermawan D, Sanagi MM
    Methods Mol Biol, 2013;970:349-61.
    PMID: 23283789 DOI: 10.1007/978-1-62703-263-6_22
    The separation of enantiomers is one of the important fields of modern analytical chemistry, especially for agrochemical and pharmaceutical products because the stereochemistry has a significant influence on the biological activities of compounds. Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) has become an important capillary electrophoresis mode for enantioseparations. Here, we describe an example of a CD-MEKC method using hydroxypropyl-γ-cyclodextrin as chiral selector and sodium dodecyl sulfate as micellar solution for enantioseparation of triazole fungicides and the drug econazole.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry
  13. Kong H, Saman N, Tee PN, Cheu SC, Song ST, Johari K, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11140-11152.
    PMID: 30796666 DOI: 10.1007/s11356-019-04248-5
    The aim of this work is to convert agroforestry residue to a novel adsorbent (M-1CTA-SDS-BT) used for adsorptive benzene sequestration from aqueous solution. In this study, the anionic surfactant-coated-cationized banana trunk was synthesized and characterized for batch adsorption of benzene from aqueous solution. The surface morphology, surface chemistry, surface area, and pore properties of the synthesized adsorbents were examined. It was proven that surface cationization successfully increased the benzene adsorption capacity of sodium dodecyl sulfate-coated adsorbents. The Langmuir isotherm model satisfactorily described the equilibrium adsorption data. The maximum benzene adsorption capacity (qmax) of 468.19 μmol/g was attained. The kinetic data followed the pseudo-second-order kinetic model in which the rate-limiting step was proven to be the film diffusion. The batch-adsorbent regeneration results indicated that the M-1CTA-SDS-BT could withstand at least five adsorption/desorption cycles without drastic adsorption capacity reduction. The findings demonstrated the adsorptive potential of agroforestry-based adsorbent as a natural and cheap material for benzene removal from contaminated water.
    Matched MeSH terms: Sodium Dodecyl Sulfate/chemistry*
  14. Nopianti R, Huda N, Ismail N, Ariffin F, Easa AM
    J Food Sci Technol, 2013 Aug;50(4):739-46.
    PMID: 24425976 DOI: 10.1007/s13197-011-0394-0
    Physicochemical properties of threadfin bream surimi with different levels of polydextrose (3%, 6%, 9% and 12%), raw surimi, raw surimi with addition sodium tripolyphosphate and commercial surimi (sucrose) during 6 months of frozen storage were investigated. The analyses included the measurement of Ca(2+)-ATPase, sulfhydryl contents, protein solubility, sodium dodecyl sulfate polyacrylamide gel electrophoresis, differential scanning calorimetry and scanning electron microscopy. The Ca(2+)-ATPase, sulfhydryl content and protein solubility levels added with 3%, 6%, 9% and 12% polydextrose can be maintained until the 6 months of storage by 47.33%, 41.60% and 51.41%, respectively. Differential scanning calorimetry showed decreases in thermal stabilization of myosin with regard to transition termperature. Analysis by scanning electron microscopy demonstrated that the number of pores formed was increased after storage. This study suggested that surimi stored with the polydextrose as a cryoprotectant was able to maintain physicochemical of surimi better compared to raw surimi with no additives or raw surimi with sodium tripolyphosphate.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  15. Marhaini Mostapha, Noorhasmiera Abu Jahar, Sarani Zakaria, Sharifah Nabihah Syed Jaafar, Kamalrul Azlan Azizan, Wan Mohd Aizat
    Sains Malaysiana, 2018;47:1259-1268.
    Oil palm is the major crop grown and cultivated in various Asian countries such as Malaysia, Indonesia and Thailand.
    The core of oil palm trunk (COPT) consists of high sugar content, hence suitable for synthesis of fine chemicals and
    biofuels. Increase of sugar content was reported previously during prolonged COPT storage. However, until now, there
    has been no report on protein profiles during storage. Therefore, in this study, protein expression of the COPT during the
    storage period of one to six weeks was investigated using sodium dodecyl sulphate polyacrylamide gel electrophoresis
    (SDS-PAGE) coupled with optical density quantification and multivariate analyses for measuring differentially expressed
    proteins. Accordingly, protein bands were subjected to tryptic digestion followed by tandem mass spectrometry (nanoLCMS/MS)
    protein identification. The results from SDS-PAGE showed consistent protein bands appearing across the biological
    replicates ranging from 10.455 to 202.92 kDa molecular weight (MW) regions. The findings from the principal component
    analysis (PCA) plot illustrated the separation pattern of the proteins at weeks 4 and 5 of storage, which was influenced
    mainly by the molecular weights of 14.283, 25.543, 29.757, 30.549, 31.511, 34.585 and 84.395 kDa, respectively. The
    majority of these proteins are identified as those involved in stress- and defense-related, disease resistance, as well
    as gene/protein expression processes. Indeed, these proteins were mostly upregulated during the later storage period
    suggesting that long-term storage may influence the molecular regulation of COPT sap.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  16. Mohamad NA, Azis N, Jasni J, Kadir MZAA, Yunus R, Yaakub Z
    Nanomaterials (Basel), 2021 Mar 19;11(3).
    PMID: 33808641 DOI: 10.3390/nano11030786
    This experimental study aims to examine the partial discharge (PD) properties of palm oil and coconut oil (CO) based aluminum oxide (Al2O3) nanofluids with and without surfactants. The type of surfactant used in this study was sodium dodecyl sulfate (SDS). The volume concentrations range of Al2O3 dispersed in oil samples was varied from 0.001% to 0.05%. The ratio of surfactants to nanoparticles was set to 1:2. In total, two different types of refined, bleached and deodorized palm oil (RBDPO) and one type of CO were measured for PD. Mineral oil (MO) was also examined for comparison purpose. PDIV measurements for all samples were carried out based on rising voltage method whereby a needle-sphere electrode configuration with a gap distance of 50 mm was chosen in this study. Al2O3 improves the PDIVs of RBDPO, CO and MO whereby the highest improvements of PDIVs are 34%, 39.3% and 27%. The PD amplitude and repetition rate of RBDPO improve by 38% and 81% while for CO, it can increase up to 65% and 80% respectively. The improvement of PD amplitude and repetition rate for MO are 18% and 95%, regardless with and without SDS. Without SDS, the presence of Al2O3 could cause 26%, 75% and 65% reductions of the average emission of light signals for RBDPOA, RBDPOB and CO with the improvement of PD characteristics but both events do not correlate at the same volume concentration of Al2O3. On the other hand, the average emission of light signal levels of the oils increases with the introduction of SDS. The emission of light signal in MO does not correlate with the PD characteristics improvement either with or without SDS.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  17. Gaaz TS, Kadhum AAH, Michael PKA, Al-Amiery AA, Sulong AB, Nassir MH, et al.
    Polymers (Basel), 2017 Jun 06;9(6).
    PMID: 30970887 DOI: 10.3390/polym9060207
    A halloysite nanotubes⁻polyvinyl alcohol⁻polyvinylpyrrolidone (HNTs⁻PVA⁻PVP) composite has been investigated for a quite long time aiming at improving the physico⁻chemical characterization of HNTs. In this work, HNTs⁻PVA⁻PVP composite were prepared based on a unique procedure characterized by crosslinking two polymers with HNTs. The composite of two polymers were modified by treating HNTs with phosphoric acid (H₃PO₄) and by using malonic acid (MA) as a crosslinker. The composite was also treated by adding the dispersion agent sodium dodecyl sulfate (SDS). The HNTs⁻PVA⁻PVP composite shows better characteristics regarding agglomeration when HNTs is treated in advance by H₃PO₄. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), brunauer⁻emmett⁻teller (BET), size distribution, and atomic force microscopy (AFM) are used to characterize the physio-chemical properties of the composite. FTIR shows additional peaks at 2924.29, 1455.7, and 682.4 cm-1 compared to the neat HNTs due to adding MA. Despite that, the XRD spectra do not show a significant difference, the decrease in peak intensity could be attributed to the addition of semi-crystalline PVA and the amorphous PVP. The images taken by TEM and FESEM show the possible effects of MA on the morphology and internal feature of HNTs⁻PVA⁻PVP composite treated by MA by showing the deformation of the matrix. The BET surface area increased to 121.1 m²/g compared to the neat HNTs at 59.1 m²/g. This result, the second highest recorded result, is considered a breakthrough in enhancing the properties of HNTs⁻PVA⁻PVP composite, and treatment by MA crosslinking may attribute to the size and the number of the pores. The results from these techniques clearly showed that a significant change has occurred for treated HNTs⁻PVA⁻PVP composite where MA was added. The characterization of HNTs⁻PVA⁻PVP composite with and without treating HNTs and using crosslinker may lead to a better understanding of this new composites as a precursor to possible applications in the dentistry field.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  18. Abdulelah H, Negash BM, Yekeen N, Al-Hajri S, Padmanabhan E, Al-Yaseri A
    ACS Omega, 2020 Aug 18;5(32):20107-20121.
    PMID: 32832765 DOI: 10.1021/acsomega.0c01738
    The influence of an anionic surfactant, a cationic surfactant, and salinity on adsorbed methane (CH4) in shale was assessed and modeled in a series of systematically designed experiments. Two cases were investigated. In case 1, the crushed Marcellus shale samples were allowed to react with anionic sodium dodecyl sulfate (SDS) and brine. In case 2, another set of crushed Marcellus shale samples were treated with cetyltrimethylammonium bromide (CTAB) and brine. The surfactant concentration and salinity of brine were varied following the Box-Behnken experimental design. CH4 adsorption was then assessed volumetrically in the treated shale at varying pressures (1-50 bar) and a constant temperature of 30 °C using a pressure equilibrium cell. Mathematical analysis of the experimental data yielded two separate models, which expressed the amount of adsorbed CH4 as a function of SDS/CTAB concentration, salinity, and pressure. In case 1, the highest amount of adsorbed CH4 was about 1 mmol/g. Such an amount was achieved at 50 bar, provided that the SDS concentration is kept close to its critical micelle concentration (CMC), which is 0.2 wt %, and salinity is in the range of 0.1-20 ppt. However, in case 2, the maximum amount of adsorbed CH4 was just 0.3 mmol/g. This value was obtained at 50 bar and high salinity (∼75 ppt) when the CTAB concentration was above the CMC (>0.029 wt %). The findings provide researchers with insights that can help in optimizing the ratio of salinity and surfactant concentration used in shale gas fracturing fluid.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  19. Razzaq L, Mujtaba MA, Soudagar MEM, Ahmed W, Fayaz H, Bashir S, et al.
    J Environ Manage, 2021 Mar 15;282:111917.
    PMID: 33453625 DOI: 10.1016/j.jenvman.2020.111917
    This study investigated the engine performance and emission characteristics of biodiesel blends with combined Graphene oxide nanoplatelets (GNPs) and 10% v/v dimethyl carbonate (DMC) as fuel additives as well as analysed the tribological characteristics of those blends. 10% by volume DMC was mixed with 30% palm oil biodiesel blends with diesel. Three different concentrations (40, 80 and 120 ppm) of GNPs were added to these blends via the ultrasonication process to prepare the nanofuels. Sodium dodecyl sulphate (SDS) surfactant was added to improve the stability of these blends. GNPs were characterised using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR), while the viscosity of nanofuels was investigated by rheometer. UV-spectrometry was used to determine the stability of these nanoplatelets. A ratio of 1:4 GNP: SDS was found to produce maximum stability in biodiesel. Performance and emissions characteristics of these nanofuels have been investigated in a four-stroke compression ignition engine. The maximum reduction in BSFC of 5.05% and the maximum BTE of 22.80% was for B30GNP40DMC10 compared to all other tested blends. A reduction in HC (25%) and CO (4.41%) were observed for B30DMC10, while a reduction in NOx of 3.65% was observed for B30GNP40DMC10. The diesel-biodiesel fuel blends with the addition of GNP exhibited a promising reduction in the average coefficient of friction 15.05%, 8.68% and 3.61% for 120, 80 and 40 ppm concentrations compared to B30. Thus, combined GNP and DMC showed excellent potential for utilisation in diesel engine operation.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  20. NUR ATHIRAH ZULKIFLI, MOHD AIDIL ADHHA ABDULLAH, MAZIDAH MAMAT
    MyJurnal
    Polymer had been widely used in industries nowadays. However, the properties of the polymer itself are limited to a particular application. This study describes synthetic clay, layered double hydroxide (LDH), as a filler in low-density polyethylene (LDPE) composite. LDHs of magnesium/aluminium-dodecyl sulfate (Mg/Al-DS) and its grafted with triethoxymethylsilane (TEMS), (TEMS-g-Mg/Al-DS) were synthesized through co-precipitation and salinization reaction methods. The presence of alkyl group, v(C-H) in both LDH had confirmed through Fourier transform infrared (FTIR). The appearance of peaks in FTIR spectra within the absorbance range of 2800 – 2930 cm-1indicates a successful surface modification of LDH, supported by the changes of interlayer spacing and the presence of carbon from X-ray diffractogram and CHNS elemental analysis, respectively. The synthesized LDH was mixed with LDPE via melt intercalation method. The LDH modification resulted in higher interaction and compatibility between the LDPE matrix and LDH by the formation exfoliated type of nanocomposites, as suggested by XRD analysis.
    Matched MeSH terms: Sodium Dodecyl Sulfate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links