Displaying all 17 publications

Abstract:
Sort:
  1. Abdallah HH, Mavri J, Repič M, Lee VS, Wahab HA
    Int J Mol Sci, 2012;13(2):1269-83.
    PMID: 22408390 DOI: 10.3390/ijms13021269
    Genistein, daidzein, glycitein and quercetin are flavonoids present in soybean and other vegetables in high amounts. These flavonoids can be metabolically converted to more active forms, which may react with guanine in the DNA to form complexes and can lead to DNA depurination. We assumed two ultimate carcinogen forms of each of these flavonoids, diol epoxide form and diketone form. Density functional theory (DFT) and Hartree-Fock (HF) methods were used to study the reaction thermodynamics between active forms of flavonoids and DNA guanine. Solvent reaction field method of Tomasi and co-workers and the Langevin dipoles method of Florian and Warshel were used to calculate the hydration free energies. Activation free energy for each reaction was estimated using the linear free energy relation. Our calculations show that diol epoxide forms of flavonoids are more reactive than the corresponding diketone forms and are hence more likely flavonoid ultimate carcinogens. Genistein, daidzein and glycitein show comparable reactivity while quercetin is less reactive toward DNA.
    Matched MeSH terms: Soybeans/chemistry*
  2. Zulkeflee Z, Sánchez A
    Water Sci Technol, 2014;70(6):1032-9.
    PMID: 25259492 DOI: 10.2166/wst.2014.329
    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.
    Matched MeSH terms: Soybeans/chemistry*
  3. Chung HY, Pan GT, Hong ZY, Hsu CT, Chong S, Yang TC, et al.
    Molecules, 2020 Sep 04;25(18).
    PMID: 32899765 DOI: 10.3390/molecules25184050
    A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g-1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g-1 at 1 A g-1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g-1 at 1 A g-1 and a high energy density of 68.2 Wh kg-1 at a power density of 1 kW kg-1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g-1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.
    Matched MeSH terms: Soybeans/chemistry*
  4. Yeoh SY, Alkarkhi AF, Ramli SB, Easa AM
    Int J Food Sci Nutr, 2011 Jun;62(4):410-7.
    PMID: 21306189 DOI: 10.3109/09637486.2010.539555
    Yellow alkaline noodles (YAN) prepared by partial substitution of wheat flour with soy protein isolate and treated with microbial transglutaminase (MTG) and ribose were investigated during cooking. Cooking caused an increase in lightness but a decrease in redness and yellowness, pH, tensile strength and elasticity values of noodles. The extents of these changes were influenced by formulation and cross-linking treatments. The pH and lightness for YAN-ribose were lowest but the yellowness and redness were the highest whilst the tensile strength and elasticity values remained moderate. For YAN-MTG, the color and pH values were moderate, but tensile strength and elasticity values were the highest. YAN prepared with both cross-linking agents had physical values between YAN-ribose and YAN-MTG. Although certain sensory parameters showed differences in score, the overall acceptability of all 10-min-cooked YAN was similar. It is possible to employ cross-linking agents to improve physical properties of cooked YAN.
    Matched MeSH terms: Soybeans/chemistry*
  5. Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, et al.
    J Sci Food Agric, 2016 Mar 30;96(5):1648-58.
    PMID: 26009985 DOI: 10.1002/jsfa.7267
    BACKGROUND: Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared.

    RESULTS: Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ.

    CONCLUSION: Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health.

    Matched MeSH terms: Soybeans/chemistry*
  6. Aisha AF, Majid AM, Ismail Z
    BMC Biotechnol, 2014;14:23.
    PMID: 24674107 DOI: 10.1186/1472-6750-14-23
    O. stamineus is a medicinal herb with remarkable pharmacological properties. However, poor solubility of the active principles limits its medicinal value. This study sought to prepare nano liposomes of OS ethanolic extract in unpurified soybean phospholipids in order to improve its solubility and permeability. OS liposomes were prepared by the conventional film method, and were characterized for solubility, entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), particle size and zeta potential, release, absorption in everted rat intestinal sacs, and DPPH scavenging effect.
    Matched MeSH terms: Soybeans/chemistry
  7. Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J
    J Biosci Bioeng, 2020 Aug;130(2):195-199.
    PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011
    Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
    Matched MeSH terms: Soybeans/chemistry
  8. Dadrasnia A, Pariatamby A
    Waste Manag Res, 2016 Mar;34(3):246-53.
    PMID: 26675494 DOI: 10.1177/0734242X15621375
    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead.
    Matched MeSH terms: Soybeans/chemistry
  9. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Soybeans/chemistry
  10. Ahmad A, Ramasamy K, Jaafar SM, Majeed AB, Mani V
    Food Chem Toxicol, 2014 Mar;65:120-8.
    PMID: 24373829 DOI: 10.1016/j.fct.2013.12.025
    The present study was undertaken to compare the neuroprotective effects between total isoflavones from soybean and tempeh against scopolamine-induced cognitive dysfunction. Total isoflavones (10, 20 and 40mg/kg) from soybean (SI) and tempeh (TI) were administered orally to different groups of rats (n=6) for 15days. Piracetam (400mg/kg, p.o.) was used as a standard drug while scopolamine (1mg/kg, i.p.) was used to induce amnesia in the animals. Radial arm and elevated plus mazes served as exteroceptive behavioural models to measure memory. Brain cholinergic activities (acetylcholine and acetylcholinesterase) and neuroinflammatory activities (COX-1, COX-2, IL-1β and IL10) were also assessed. Treatment with SI and TI significantly reversed the scopolamine effect and improved memory with TI group at 40mg/kg, p.o. exhibiting the best improvement (p<0.001) in rats. The TI (10, 20 and 40mg/kg, p.o.) significantly increased (p<0.001) acetylcholine and reduced acetylcholinesterase levels. Meanwhile, only a high dose (40mg/kg, p.o.) of SI showed significant improvement (p<0.05) in the cholinergic activities. Neuroinflammation study also showed that TI (40mg/kg, p.o.) was able to reduce inflammation better than SI. The TI ameliorates scopolamine-induced memory in rats through the cholinergic neuronal pathway and by prevention of neuroinflammation.
    Matched MeSH terms: Soybeans/chemistry*
  11. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Soybeans/chemistry
  12. Chang AS, Yeong BY, Koh WP
    Nutr Rev, 2010 Apr;68(4):246-52.
    PMID: 20416020 DOI: 10.1111/j.1753-4887.2010.00283.x
    Reported here is a summary of the proceedings of the Symposium on Plant Polyphenols: Nutrition, Health and Innovations, which was cosponsored by the Southeast Asia Region branch of the International Life Sciences Institute and the Nutrition Society of Malaysia in Kuala Lumpur, Malaysia, June 22-23, 2009. The symposium provided a timely update of research regarding the protective effects of polyphenols in chronic diseases, such as cardiovascular disease and cancer, as well as the development of innovative polyphenol-containing food products with enhanced nutritive and health properties. Presentations covered polyphenols from a wide range of food sources such as tea, coffee, nuts and seeds, cocoa and chocolate, soy, and Asian fruits, vegetables, and spices. The symposium was attended by a large and diverse group of nutritionists, dietitians, researchers and allied health professionals, as well as management, research and development, and marketing personnel from the food and beverage industry. Their enthusiastic participation was a testament to the increasing awareness and interest in polyphenols in the prevention and control of chronic diseases. Presented here are some of the highlights and important information from the symposium.
    Matched MeSH terms: Soybeans/chemistry
  13. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Soybeans/chemistry*
  14. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Soybeans/chemistry*
  15. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
    Matched MeSH terms: Soybeans/chemistry*
  16. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Soybeans/chemistry*
  17. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Balasubramanian MP
    J Environ Pathol Toxicol Oncol, 2015;34(4):287-98.
    PMID: 26756422
    The aim of the study was to evaluate the protective activity of D-Pinitol against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The animals were divided into six groups, with each group consisting of six animals. Group I animals served as normal controls and received olive oil vehicle (1.0 ml/kg body weight intraperitoneally). Group II rats served as CCl4 controls, which received 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks. Group III rats were treated with 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks, followed by D-Pinitol (100 mg/kg body weight) given for 28 days intragastrically. Group IV rats received D-Pinitol alone at a concentration of 100 mg/kg body weight for 28 days intragastrically. At the end of the experimental period, serum marker enzymes and lipid peroxidation (LPO) levels were significantly increased in group II animals. On the other hand, D-Pinitol treatment significantly decreased marker enzymes and LPO levels and increased the antioxidant level. CYP expression was also investigated. Therefore, the present study revealed that D-Pinitol acts as a protective agent by decreasing metabolic activation of xenobiotics through its antioxidant nature.
    Matched MeSH terms: Soybeans/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links