METHODS: This systematic review was accorded to the guideline of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Three electronic databases, namely PubMed, Embase, and the Cochrane library, were used to conduct a systematic search for eligible studies from their inception until July 18, 2023. PROSPERO registration number was No. CRD42023445968.
RESULTS: We initially identified 4,774 articles. After eliminating duplicates and irrelevant articles, 11 studies met the inclusion criteria. The studies revealed important aspects of the relationship between S. mutans and Veillonella spp. in dental caries. One significant finding is that Veillonella spp. can affect the acid production capacity of S. mutans. Some studies indicate that Veillonella spp. can inhibit the acid production by S. mutans, potentially reducing the cariogenic process. Another aspect is the competition for substrates. Veillonella spp. utilize lactic acid, which is a by product of S. mutans metabolism, as a source of carbon. This metabolic interaction may decrease the availability of lactic acid for S. mutans, potentially influencing its cariogenic potential.
CONCLUSIONS: This systematic review highlights the emerging evidence on the interaction between S. mutans and Veillonella spp. in dental caries. The findings suggest that Veillonella spp. can modulate the acid production, and substrate competition of S. mutans, potentially influencing the cariogenic process.
OBJECTIVES: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined.
MATERIAL AND METHODS: S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly.
RESULTS: It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity.
CONCLUSION: The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.
Materials and Methods: This randomized controlled trial was conducted on 40 healthy children aged between 10 and 12 years of age who were randomly assigned to either of the groups: Group I--Chewable Toothbrushes and Group II--Manual Toothbrushes. Following oral prophylaxis, baseline records of oral hygiene indices (Simplified oral hygiene index (OHI-S) in indexed teeth and Turesky modification of Quigley Hein plaque index (TMQHI) were taken. Baseline Saliva samples were collected and sent for Streptococcus mutans counts. Children were then instructed to use their respective toothbrush twice daily for a week. Oral hygiene indices and S. mutans counts were repeated after 1 week.
Results: Differences in pre-brushing and post-brushing plaque scores and salivary S. mutans counts were statistically significant when compared using paired-sample t test and independent-sample t test. There was a significant reduction in salivary S. mutans counts after using both chewable and manual toothbrushes. However, there was no statistically significant difference between the two groups (P = 0.08).
Conclusion: Chewable toothbrushes are equally effective in plaque control when compared to manual toothbrushes. These can be a reliable alternative for children who lack manual dexterity.
MATERIALS AND METHODS: Single- (Streptococcus mutans or Lactobacillus acidophilus), dual- (Streptococcus mutans/Lactobacillus Acidophilus), and multi-species (Streptococcus mutans, Actinomyces naeslundii, and Streptococcus sanguis) biofilms were grown on acid-etched dentine discs. Biofilms were incubated (120 min/37 °C) and allowed to grow for 3 days anaerobically. Discs (no treatment) served as control (group 1). Groups II, III, IV, and V were then treated with 2% chlorhexidine, and 2%, 5%, and 10% QAS (20 s). Discs were returned to well plates with 300 μL of bacterial suspension and placed in anaerobic incubator at 37 °C and biofilms redeveloped for 4 days. Confocal microscopy, Raman, CFU, and MTT assay were performed.
RESULTS: Raman peaks show shifts at 1450 cm-1, 1453 cm-1, 1457 cm-1, 1460 cm-1, and 1462 cm-1 for control, 2% CHX, 2%, 5%, and 10% QAS groups in multi-species biofilms. There was reduction of 484 cm-1 band in 10% QAS group. CLSM revealed densely clustered green colonies in control group and red confluent QAS-treated biofilms with significantly lower log CFU for single/dual species. Metabolic activities of Streptococcus mutans and Lactobacillus acidophilus decreased with increasing QAS exposure time.
CONCLUSION: Quaternary ammonium silanes possess antimicrobial activities and inhibit growth of cariogenic biofilms.
CLINICAL SIGNIFICANCE: Available data demonstrated use of QAS as potential antibacterial cavity disinfectant in adhesive dentistry. Experimental QAS can effectively eliminate caries-forming bacteria, when used inside a prepared cavity, and can definitely overcome problems associated with present available cavity disinfectants.
METHODOLOGY: A comparative, cross-sectional study was designed among 180 mother-child pairs attending various Anganwadi centers. Demographic, dietary, oral hygiene practices and other necessary information were collected from mothers using a structured questionnaire. Caries status and amount of plaque were recorded through clinical examination. Nonstimulated saliva from mothers was cultured for mutans streptococci (MS). Data were analyzed using SPSS version 17. Chi-square, Student's t-test, and logistic regression were used. A P ≤ 0.05 was considered statistically significant.
RESULTS: In the study group, 73.3% of mothers had caries as compared to only 53.3% mothers in control group. While mean DMFT and mean DMFS of mothers in the study group was 3.78 ± 3.91 and 8.37 ± 12.2, respectively, the same for the mothers in the control group was 2.66 ± 3.01 and 5.8 ± 5.3. Sixty (66.7%) out of ninety mothers in the study group had a high MS count as compared to only 40 (44.4%) mothers in control group (P = 0.003).
CONCLUSION: The present study showed that high salivary MS count and decay in mothers could be important risk indicators for the development of caries in their children.
MATERIALS AND METHODS: Candida albicans, Streptococcus mutans, and Staphylococcus aureus were incubated with modified and unmodified silicone groups (N = 35) for 30 days at 37°C. The counts of viable microorganisms in the accumulating biofilm layer were determined and converted to cfu/cm2 unit surface area. A scanning electron microscope (SEM) was used to evaluate the microbial adhesion. Statistical analysis was performed using t-test, one-way ANOVA, and post hoc tests as indicated.
RESULTS: Significant differences in microbial adhesion were observed between modified and unmodified silicone elastomers after the cells were incubated for 30 days (p < 0.001). SEM showed evident differences in microbial adhesion on modified silicone elastomer compared with unmodified silicone elastomer.
CONCLUSIONS: Surface modification of silicone elastomer yielding a smoother and less porous surface showed lower adhesion of different microorganisms than observed on unmodified surfaces.