Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Khan, Sohail. A., Mat Jafri, M.Z., Jaafar, M.S., Low, K.L.
    MyJurnal
    A modified potential of the sudden approximation, modified to include interactions among nuclei of different radii, is applied to explain the mass asymmetry of fission fragments in the thermal fission of Uranium-235. The results are encouraging in that the asymmetry feature in the fission yield is displayed. It appears that the mass asymmetry is a feature that can be explained without incorporating other effects. However, close correspondence requires addition of extra features.
    Matched MeSH terms: Uranium
  2. Thivya C, Chidambaram S, Keesari T, Prasanna MV, Thilagavathi R, Adithya VS, et al.
    Environ Geochem Health, 2016 Apr;38(2):497-509.
    PMID: 26104429 DOI: 10.1007/s10653-015-9735-7
    Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l(-1)) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3)(2)(2-)] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.
    Matched MeSH terms: Uranium/analysis*
  3. Hu SJ, Chong CS, Subas S
    Health Phys, 1981 Feb;40(2):248-50.
    PMID: 7216807
    Matched MeSH terms: Uranium/analysis*
  4. Khairul Nizam Mohd Ramli, Che Abd. Rahim Mohamed, Zaharuddin Ahmad
    Sains Malaysiana, 2007;36:9-13.
    Kajian ini dijalankan bagi mengenalpasti kepelbagaian nisbah 234U/238U yang wujud di dalam jumlah pepejal terampai (TSS) pada lapan stesen yang berbeza di Kuala Selangor, Selangor. Prosedur kajian ini melibatkan proses persampelan, pemendakan, resin penukaran anion, pemendakan elektrik dan teknik pengiraaan spektrometer alfa. Nisbah 234U/238U adalah paling tinggi di Stesen 8 (234U/238U = 2.98) dan Stesen 2 (234U/238U = 3.34) pada persampelan pertama. Manakala pada persampelan kedua julat nisbah 234U/238U adalah lebih luas iaitu antara 1.29 (Stesen 4) hingga 11.57 (Stesen 6). Ini disebabkan oleh berlakunya pergerakan 234U bersama-sama mikroorganisme di dalam fasa terampai dan berlaku proses penurunan U(VI) kepada U(IV) yang akan memendakkan uranium daripada air ke dalam sedimen.
    Matched MeSH terms: Uranium
  5. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Uranium/analysis
  6. Ramli AT, Hussein AW, Wood AK
    J Environ Radioact, 2005;80(3):287-304.
    PMID: 15725504
    Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.
    Matched MeSH terms: Uranium/analysis*
  7. Hu SJ, Koo WK, Tan KL
    Health Phys, 1984 Feb;46(2):452-5.
    PMID: 6693279
    Matched MeSH terms: Uranium/analysis*
  8. Chong CS, Chong HY, Fun HK, Leong LS
    Health Phys, 1985 Nov;49(5):1008-10.
    PMID: 4066326
    Matched MeSH terms: Uranium/analysis
  9. Adithya VSP, Chidambaram S, Prasanna MV, Venkatramanan S, Tirumalesh K, Thivya C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):308-318.
    PMID: 33398396 DOI: 10.1007/s00244-020-00798-9
    The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser (0.235-6.453 μSvy-1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any health risks to consumers. The spatial distribution of Rn's effective dose level indicates the higher values were mainly in the central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop plans for management of drinking water resources in the region.
    Matched MeSH terms: Uranium/analysis
  10. Ruff CB, Sylvester AD, Rahmawati NT, Suriyanto RA, Storm P, Aubert M, et al.
    J Hum Evol, 2022 Nov;172:103252.
    PMID: 36162353 DOI: 10.1016/j.jhevol.2022.103252
    Late Pleistocene hominin postcranial specimens from Southeast Asia are relatively rare. Here we describe and place into temporal and geographic context two partial femora from the site of Trinil, Indonesia, which are dated stratigraphically and via Uranium-series direct dating to ca. 37-32 ka. The specimens, designated Trinil 9 and 10, include most of the diaphysis, with Trinil 9 being much better preserved. Microcomputed tomography is used to determine cross-sectional diaphyseal properties, with an emphasis on midshaft anteroposterior to mediolateral bending rigidity (Ix/Iy), which has been shown to relate to both body shape and activity level in modern humans. The body mass of Trinil 9 is estimated from cortical area and reconstructed length using new equations based on a Pleistocene reference sample. Comparisons are carried out with a large sample of Pleistocene and Holocene East Asian, African, and European/West Asian femora. Our results show that Trinil 9 has a high Ix/Iy ratio, most consistent with a relatively narrow-bodied male from a mobile hunting-gathering population. It has an estimated body mass of 55.4 kg and a stature of 156 cm, which are small relative to Late Pleistocene males worldwide, but larger than the penecontemporaneous Deep Skull femur from Niah Cave, Malaysia, which is very likely female. This suggests the presence of small-bodied active hunter-gatherers in Southeast Asia during the later Late Pleistocene. Trinil 9 also contrasts strongly in morphology with earlier partial femora from Trinil dating to the late Early-early Middle Pleistocene (Femora II-V), and to a lesser extent with the well-known complete Femur I, most likely dating to the terminal Middle-early Late Pleistocene. Temporal changes in morphology among femoral specimens from Trinil parallel those observed in Homo throughout the Old World during the Pleistocene and document these differences within a single site.
    Matched MeSH terms: Uranium*
  11. Hanfi MYM, Masoud MS, Sayyed MI, Khandaker MU, Faruque MRI, Bradley DA, et al.
    PLoS One, 2021;16(3):e0249329.
    PMID: 33788889 DOI: 10.1371/journal.pone.0249329
    Uranium, perhaps the most strategically important component of heavy minerals, finds particular significance in the nuclear industry. In prospecting trenches, the radioactivity of 238U and 232Th provides a good signature of the presence of heavy minerals. In the work herein, the activity concentrations of several key primordial radionuclides (238U, 232Th, and 40K) were measured in prospecting trenches (each of the latter being of approximately the same geometry and physical situation). All of these are located in the Seila area of the South Eastern desert of Egypt. A recently introduced industry standard, the portable hand-held RS-230 BGO gamma-ray spectrometer (1024 channels) was employed in the study. Based on the measured data, the trenches were classified as either non-regulated (U activity less than 1000 Bq kg-1) or regulated (with 238U activity more than 1000 Bq kg-1). Several radiological hazard parameters were calculated, statistical analysis also being performed to examine correlations between the origins of the radionuclides and their influence on the calculated values. While the radioactivity and hazard parameters exceed United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) guided limits, the mean annual effective doses of 0.49 and 1.4 mSv y-1 in non-regulated and regulated trenches respectively remain well below the International Commission on Radiological Protection (ICRP) recommended 20 mSv/y maximum occupational limit. This investigation reveals that the studied area contains high uranium content, suitable for extraction of U-minerals for use in the nuclear fuel cycle.
    Matched MeSH terms: Uranium/analysis
  12. Hassan HJ, Hashim S, Mohd Sanusi MS, Jamal MH, Hassan SA, Bradley DA, et al.
    PLoS One, 2021;16(6):e0250528.
    PMID: 34061865 DOI: 10.1371/journal.pone.0250528
    Forming part of a study of radiological risk arising from use of radioactive consumer products, investigation is made of pendants containing naturally occurring radioactive material. Based on use of gamma-ray spectrometry and Monte Carlo (MC) simulations, the study investigates commercially available 'scalar energy pendants'. The doses from these have been simulated using MIRD5 mathematical phantoms, evaluation being made of dose conversion factors (DCFs) and organ dose. Metallic pendants code MP15 were found to contain the greatest activity, at 7043 ± 471 Bq from 232Th, while glass pendants code GP11 were presented the greatest 238U and 40K activity, at 1001 ± 172 and 687 ± 130 Bq respectively. MP15 pendants offered the greatest percentage concentrations of Th, Ce, U and Zr, with means of 25.6 ± 0.06, 5.6 ± 0.005, 1.03 ± 0.04 and 28.5 ± 0.08 respectively, giving rise to an effective dose of 2.8 mSv for a nominal wearing period of 2000 h. Accordingly, these products can give rise to annual doses in excess of the public limit of 1 mSv.
    Matched MeSH terms: Uranium/analysis
  13. Azmirul Ashaari, Tahir Ahmad, Wan Munirah Wan Mohamad
    MATEMATIKA, 2018;34(2):235-244.
    MyJurnal
    Pressurized water reactor (PWR) type AP1000 is a third generation of a nuclear
    power plant. The primary system of PWR using uranium dioxide to generate heat energy
    via fission process. The process influences temperature, pressure and pH value of water
    chemistry of the PWR. The aim of this paper is to transform the primary system of PWR
    using fuzzy autocatalytic set (FACS). In this work, the background of primary system
    of PWR and the properties of the model are provided. The simulation result, namely
    dynamic concentration of PWR is verified against published data.
    Matched MeSH terms: Uranium Compounds
  14. Joel ES, Maxwell O, Adewoyin OO, Olawole OC, Arijaje TE, Embong Z, et al.
    Sci Rep, 2019 03 12;9(1):4219.
    PMID: 30862825 DOI: 10.1038/s41598-019-40884-0
    Natural radioactivity in coastaline area soil of Ado-Odo/Ota has been carried out to ascertain the presence of radionuclides using gamma-ray spectroscopy (HPGe detector). The result showed that U-238, Th-232 and K-40 ranged from 24 ± 7-49 ± 10; 67 ± 6-120 ± 9 and 88 ± 17-139 ± 20 Bqkg-1 respectively. The radium equivalent for the samples ranged from 132.51 to 230.91 Bqkg-1 with mean value of 185.89 Bqkg-1. The mean value for the gamma dose rate for the soil samples was estimated to be 81.32 nGyh-1. The estimated values of annual effective dose equivalent ranged from 0.61 to 1.07 mSv y-1. The estimation of alpha index representative (Iα) ranged from 0.12 to 0.24 with mean value of 0.21 while the gamma representative index ranged between 0.465 and 0.810. The activity utilization index of the soil samples ranged from 1.09 to 1.89 with mean value of 1.53. The radiological implication in the study area has shown that the soil samples with gamma dose rate value of 89.99 nGyh-1, 94.39 nGyh-1, 97.40 nGyh-1 and 101.04 nGyh-1 respectively are higher than the recommended value of 80 nGyh-1 and may pose health implication for long term exposure.
    Matched MeSH terms: Uranium
  15. Mohd Azmi Ismail, Mohammad Roston Zakaria
    MyJurnal
    An appraisal of the regional reconnaissance geophysical, geochemical and geological data obtained under the Central Belt Project in 1977 – 1978 appeared to constitute favourable uranium exploration targets. Follow-up surveys conducted until the year 1990 have proposed the exploration area to be divided into three transects. Transect 1 covers the western part of the state of Kelantan, northwest Pahang and the eastern half of Perak. Transect 2 covers southeastern tip of Perak, west Pahang, eastern half of Wilayah Persekutuan, eastern portion of Selangor, and the northwest portion of Negeri Sembilan. Transect 3 covers central Kelantan, northwestern of Terengganu and northern portion of Pahang. Results of the study indicate that the Main Range, Bujang Melaka, and Bukit Tinggi Plutons are most fertile with uranium spectrometric rock values range from 13 to 25 ppm. Further investigations to zero down the target areas for uranium mineralization are strongly recommended over these areas.
    Matched MeSH terms: Uranium
  16. Meor Yusoff, M.S., Masliana Muslimin
    MyJurnal
    The paper looks into the possibility of using standard addition method to analyse uranium and thorium in tin slag. Tin slag samples obtained from Butterworth was grind to 180 ȝm and injected with different concentrations of uranium and thorium. Linear calibration graphs were obtained for both these samples with R 2 values for uranium and thorium as 0.9989 and 0.9915 respectively. Based on this graphs, the initial uranium and thorium in the tin slag sample was established as 60 ppm for uranium and 160 ppm for thorium.
    Matched MeSH terms: Uranium
  17. Omar, M.
    MyJurnal
    The interference of 235 U on 226 Ra concentration measured directly using the γ-ray energy of 186 keV and the interference of 228 Ac on the 40 K analysis by gamma-spectrometry system were highlighted and discussed. The interference of 235 U was demonstrated to be very significant, i.e. 45% of the 226 Ra concentration measured directly at 186 keV in natural samples containing uranium series in equilibrium. The interference of 228 Ac on 40 K concentration was particularly significant for samples containing high concentration of 228 Ac ( 228 Ra) such as radioactive minerals. Another important aspect discussed is the assignment of the right emission probability of the 583 keV and 2614 keV of the 208 Tl for the purpose of estimating the concentration of 232 Th or other radionuclides in the thorium series. Extra cautions are required in the interpretation of the measured 208 Tl concentration in samples of various natures. It is suggested that the emission probability used for 208 Tl be reported for comparison and verification.
    Matched MeSH terms: Uranium
  18. Akyil S, Yusof AM
    J Hazard Mater, 2007 Jun 1;144(1-2):564-9.
    PMID: 17141412
    Concentrations of uranium and thorium in seawater, sediment and some marine species taken from along the coastal areas of Malaysia were determined spectrophotometrically. The uranium and thorium concentrations in seawater were found to vary ranging from 1.80 to 4.1 and 0.14 to 0.88 microg/L, respectively. The concentration of uranium in sediment samples was reported to range from 3.00 to 6.60 microg/g while those of thorium were slightly lower ranging from 0.01 to 0.68 microg/g. The uptake of uranium and thorium in marine species was found to be rather low. Similar variations in total alpha activities in samples were also observed with the total alpha activities relatively lower than the beta activities in most samples.
    Matched MeSH terms: Uranium/analysis*; Uranium/metabolism
  19. Asfahani J, Samuding K, Mostapa R, Othman O
    Appl Radiat Isot, 2021 Jan;167:109296.
    PMID: 33022484 DOI: 10.1016/j.apradiso.2020.109296
    Natural gamma ray well logging technique is used to characterize the radioactivity (GR) laterally and vertically in Banting district, SW of Malaysia. Seven drilled boreholes, along N-S profile with their natural gamma ray records are utilized to compute the heat production (HP) parameter, based on the Bucker and Rybach relationship.The analysis of 3467 measured points in those boreholes indicates that GR varies between 6.24 API and 358.4 API with an average of 79.95 API, while HP varies between 0.086 and 5.65 μw/m3 with an average of 1.25 μw/m3.The multi-fractal Concentration-Number (C-N) is used to characterize the radioactivity and heat production variations and to isolate different GR and HP populations in the study region. The high radioactivity and heat production ranges are mainly related to the silty clay layers, accompanied by uranium and thorium.
    Matched MeSH terms: Uranium
  20. Kassa S, Tsegab H, Sum CW, CheeMeng C
    Data Brief, 2019 Aug;25:104162.
    PMID: 31317063 DOI: 10.1016/j.dib.2019.104162
    Fission tracks are linear trails of intense radiation damage in the crystal structure of a mineral, produced by spontaneous fissioning of uranium-238 (238U) atoms. Detail information on the low-temperature thermal histories of rocks, below∼120 °C for tracks in apatite and below∼350 °C for zircon, can be provided by Fission-track (FT) analysis. The purpose of this article is to present apatite and zircon fission-track data, and U-Pb granite ages that provide information about the cooling histories of a rock which can be crucial in comprehending the exhumation episodes of the study area, in particular, and the region, in general. Granite samples were collected along the same vertical profile at different elevation, 178-944 m.a.s.l. These samples were used to determine Fission-Track and crystallization ages. HeFTy software was employed to interpret the cooling histories of the samples using forward and inverse models. The inverse model was an approach of reproducing the observed data, and it was carried out only for fission-track data from the apatite grains. And it was constructed after generating a number of forward models, where in each of these models the predicted apatite fission-track parameters were compared to the measured values. The apatite fission track (AFT) and zircon fission track (ZFT) data indicated expected age trends, i.e. the older ages at higher elevations and the younger ages at lower elevations. Similarly, the data shows that the apatite and zircon FT ages appear younger than the age of the rock crystallization. The U-Pb age in zircon consistently suggest the age of the granite is Late Triassic.
    Matched MeSH terms: Uranium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links