Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Zainudin MF, Abu Hassan SA, Khin NY
    Spinal Cord Ser Cases, 2024 Apr 03;10(1):16.
    PMID: 38570486 DOI: 10.1038/s41394-024-00632-7
    INTRODUCTION: NeuroAiD (MLC601 & MLC901)'s neuroprotective capabilities include limiting exaggerated calcium influx, decreasing excitotoxicity, reducing oxidative stress, and preventing glutamate-induced cell death. It has also been shown to facilitate synaptogenesis, neurogenesis, and neuroplasticity. However, its clinical efficacy has primarily been studied in the context of brain injuries, particularly stroke. NeuroAiD's potential application in SCI remains largely untapped.

    CASE PRESENTATION: A 34-year-old male presented with C4 complete tetraplegia. Following surgical decompression and initial inpatient rehabilitation, he started consuming MLC901 two capsules three times daily at month 4 post injury for 6 months. He regained considerable neurological recovery following the supplementation. Apart from the improvement in the neurological level of injury, the patient exhibited motor recovery beyond the initial zone of partial preservation up to 24 months post injury.

    DISCUSSION: Our findings align with a recent animal study demonstrating MLC901's potential to downregulate Vascular Endothelial Growth Factor (VEGF), a molecule known to increase vascular permeability and exacerbate tissue edema and infarction. In another animal study involving stroke-affected mice, MLC901 demonstrates the ability to promote neurological recovery by regulating the expression of proteins mediating angiogenesis, such as hypoxic inducible factor 1α, erythropoietin, angiopoietins 1 and 2, as well as VEGF. The anecdotal findings from this case report offer preliminary insights into NeuroAiD's potential in facilitating recovery during post-acute and chronic phases of severe SCI, necessitating further exploration.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  2. Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, et al.
    Molecules, 2023 Jul 12;28(14).
    PMID: 37513223 DOI: 10.3390/molecules28145350
    Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  3. Ang WJ, Zunaina E, Norfadzillah AJ, Raja-Norliza RO, Julieana M, Ab-Hamid SA, et al.
    PLoS One, 2019;14(8):e0221481.
    PMID: 31437234 DOI: 10.1371/journal.pone.0221481
    OBJECTIVE: Detection of vascular endothelial growth factor (VEGF) levels in ocular tissue may perhaps provide insight into the role of VEGF in the pathogenesis and progression of diabetic retinopathy (DR). The aim of this study was to evaluate the levels of VEGF in tears and serum amongst type 2 diabetes mellitus (DM) patients.

    METHODS: A comparative cross-sectional study was conducted between August 2016 and May 2018 involving type 2 DM patients with no DR, non-proliferative DR (NPDR), and proliferative DR (PDR). Tear samples were collected using no.41 Whatman filter paper (Schirmer strips) and 5 mL blood samples were drawn by venous puncture. VEGF levels in tears and serum were measured by enzyme-linked immunosorbent assay.

    RESULTS: A total of 88 type 2 DM patients (no DR: 30 patients, NPDR: 28 patients, PDR: 30 patients) were included in the study. Mean tear VEGF levels were significantly higher in the NPDR and PDR groups (114.4 SD 52.5 pg/mL and 150.8 SD 49.7 pg/mL, respectively) compared to the no DR group (40.4 SD 26.5 pg/mL, p < 0.001). There was no significant difference in the mean serum VEGF levels between the three groups. There was a fair correlation between serum and tear VEGF levels (p = 0.015, r = 0.263).

    CONCLUSION: VEGF levels in tears were significantly higher amongst diabetic patients with DR compared to those without DR and were significantly associated with the severity of DR. There was a fair correlation between serum and tear VEGF levels. Detection of VEGF in tears is a good non-invasive predictor test for the severity of DR. A large cohort study is needed for further evaluation.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  4. Abdul Ghani NA, Abdul Nasir NA, Lambuk L, Sadikan MZ, Agarwal R, Ramli N
    Graefes Arch Clin Exp Ophthalmol, 2023 Jun;261(6):1587-1596.
    PMID: 36622408 DOI: 10.1007/s00417-022-05965-3
    PURPOSE: Angiogenesis in diabetic retinopathy (DR) is associated with increased retinal expression of angiopoietin-2 (Ang-2) and protein kinase C (PKC). Tocotrienol-rich fraction (TRF) has been shown to reduce the expression vascular endothelial growth factor (VEGF) in several experimental models. However, its effect against other angiogenic markers such as Ang-2 and PKC in rat model of diabetes remains unknown. Therefore, we investigated the effect of TRF on the retinal vascular changes and Ang-2 and PKC expressions in rats with streptozotocin (STZ)-induced DR.

    METHODS: Sprague-Dawley rats were divided into normal control rats (N) which received vehicle, and diabetic rats which either received vehicle (DV) or 100 mg/kg of TRF (DT). Diabetes was induced with intraperitoneal injection of STZ (60 mg/kg body weight). Treatments were given orally, once daily, for 12 weeks after confirmation of hyperglycaemia. Fundus photographs were captured at baseline, 6- and 12-week post-STZ injection and average diameter of retinal veins and arteries were measured. At 12-week post-STZ injection, rats were euthanised, and retinae were collected for measurement of Ang-2 and PKC gene and protein expressions.

    RESULTS: Retinal venous and arterial diameters were significantly greater in DV compared to DT at week 12 post-STZ injection (p vascular diameter of rats with STZ-induced DR.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  5. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, et al.
    Bioengineered, 2022 Jun;13(6):14681-14718.
    PMID: 35946342 DOI: 10.1080/21655979.2022.2100863
    Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  6. Xu Y, Zhang X, Fu Z, Dong Y, Yu Y, Liu Y, et al.
    Stem Cells Dev, 2024 Nov;33(21-22):616-629.
    PMID: 39155804 DOI: 10.1089/scd.2024.0072
    Heart failure (HF) is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced HF rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (N = 5). These cells that primarily expressed SCA-1, NANOG, and mesenchymal markers, CD90, CD105, and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 × 105 cells/heart) were injected into the pericardial cavity of the DOX-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted red fluorescent protein-tagged hPFCs coexpressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFC treatment (P < 0.0001 vs. untreated). The elevated inflammatory cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor-α in the DOX-treated hearts were found to be significantly reduced (P < 0.001 vs. untreated), while the regional proangiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFC-treated group after 4 weeks (P < 0.05 vs. untreated). hPFCs possess stem cell characteristics and can improve the cardiac functions of DOX-induced HF rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional proangiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  7. Ng CT, Yip WK, Mohtarrudin N, Seow HF
    Malays J Pathol, 2015 Dec;37(3):219-25.
    PMID: 26712666 MyJurnal
    Immortalized human endothelial cells are widely used as in vitro models for debilitating conditions such as cancer, cardiovascular and ocular diseases. Human microvascular endothelial cell (HMEC-1) is immortalized via stable transfection with a gene encoding SV40 large antigen whilst telomerase-immortalized human microvascular endothelial (TIME) cells is immortalized by engineering the human telomerase catalytic protein (hTERT) into primary microvascular endothelial cells. Here, we established a three-dimensional (3D) spheroid invasion assay with HMEC-1 and TIME and compared the difference in their ability to invade through the collagen matrix in response to exogenous growth factors, namely vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF).
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism*
  8. Ezhilarasu H, Sadiq A, Ratheesh G, Sridhar S, Ramakrishna S, Ab Rahim MH, et al.
    Nanomedicine (Lond), 2019 01;14(2):201-214.
    PMID: 30526272 DOI: 10.2217/nnm-2018-0271
    AIM: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.

    MATERIALS & METHODS: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.

    RESULTS: The results observed that the core/shell nanofibers interact to differentiate MSCs into smooth muscle cells by the expression of vascular smooth muscle cell (VSMC) contractile proteins α-actinin, myosin and F-actin.

    CONCLUSION: The functionalized polycaprolactone/gelatin/silk fibroin/VEGF (250 ng) core/shell nanofibers were fabricated for the controlled release of VEGF in a persistent manner for the differentiation of MSCs into smooth muscle cells for vascular tissue engineering.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  9. Mohamad Pakarul Razy NH, Wan Abdul Rahman WF, Win TT
    Asian Pac J Cancer Prev, 2019 Jan 25;20(1):277-282.
    PMID: 30678450
    Introduction: Vascular endothelial growth factor (VEGF) is an angiogenic factor that plays an important role in
    thyroid cancer. VEGF is known to have high affinity to VEGF receptors such as VEGFR-1 (Flt-1) and VEGFR-2 (KDR).
    Papillary thyroid carcinoma (PTC) is the most common thyroid cancer and studies showed the increasing incidence of
    PTC arising in nodular hyperplasia. Targeted therapy on these growth factors and receptors are used in management
    of both differentiated and undifferentiated thyroid carcinoma. This study aims to determine the expression of VEGF
    and VEGF receptors (VEGFR) in thyroid nodular hyperplasia and PTC. Methods: A cross-sectional study based on
    paraffinized archival tissue blocks of 113 nodular hyperplasias and 67 PTC from the thyroidectomy specimens in
    the year of 2003 to 2014. The tissue sections were then stained by immunohistochemistry for VEGF, VEGFR-1 and
    VEGFR-2. The lymph node involvement and extrathyroid extension also were determined. Results: The mean age of
    PTC patients was 44.7±15.8 years and nodular hyperplasia were 42.2±13.6 years. There was a statistical difference
    of VEGFR-1 (p=0.028) and VEGFR-2 (p=0.003) expression between nodular hyperplasia and PTC. However, no
    significant difference of VEGF expression (p=0.576) between both diseases. Co-expression of VEGF and VEGFR-1
    was significant in both nodular hyperplasia (p=0.016) and PTC (p=0.03), meanwhile no relevant relationship for VEGF
    and VEGFR-2 expression (p>0.05). No significant association (p>0.05) between lymph node status and extrathyroid
    extension with age groups, gender, VEGF and VEGFR expression. Conclusions: VEGF, VEGFR-1 and VEGFR-2
    showed overexpression in both nodular hyperplasia and PTC. The expression of VEGFR-1 and VEGFR-2 are more
    significant in PTC with relevant co-expression of VEGF and VEGFR-1. Therefore, the inhibition of VEGFR offers a
    promising prospect for tumour management in thyroid carcinoma.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism*
  10. Maki MAA, Cheah SC, Bayazeid O, Kumar PV
    Sci Rep, 2020 10 15;10(1):17468.
    PMID: 33060727 DOI: 10.1038/s41598-020-74467-1
    Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  11. Mohamad NA, Ramachandran V, Ismail P, Mohd Isa H, Chan YM, Ngah NF, et al.
    Genet Test Mol Biomarkers, 2017 Oct;21(10):600-607.
    PMID: 28926292 DOI: 10.1089/gtmb.2017.0079
    AIM: To determine the association of vascular endothelial growth factor (VEGF) polymorphisms with neovascular age-related macular degeneration (nAMD).

    MATERIALS AND METHODS: One hundred thirty-five nAMD patients and 135 controls were recruited to determine the association of the -460 C/T, the -2549 I/D, and the +405 G/C polymorphisms with the VEGF gene. Genotyping was conducted using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach, and association analyses were conducted using chi-square analysis and logistic regression analysis.

    RESULTS: A significant association was observed between nAMD and the VEGF +405 G/C genotypes (p = 0.002) and alleles (odds ratio = 1.36, 95% confidence interval = 1.12-1.62, p = < 0.001) compared with the controls. This association was confirmed by logistic regression analyses, using two different genetic models (additive and dominant) resulting in p-values of p = 0.001 and p 

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  12. Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, et al.
    J Ethnopharmacol, 2024 May 23;326:117913.
    PMID: 38360380 DOI: 10.1016/j.jep.2024.117913
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated.

    AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.

    MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.

    RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.

    CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  13. Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, et al.
    Indian J Pharmacol, 2019 4 30;51(1):45-54.
    PMID: 31031467 DOI: 10.4103/ijp.IJP_312_18
    OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity.

    MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.

    RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.

    CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.

    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  14. Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, et al.
    PLoS One, 2015;10(1):e0115034.
    PMID: 25615717 DOI: 10.1371/journal.pone.0115034
    Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  15. Wu LE, Meoli CC, Mangiafico SP, Fazakerley DJ, Cogger VC, Mohamad M, et al.
    Diabetes, 2014 Aug;63(8):2656-67.
    PMID: 24696450 DOI: 10.2337/db13-1665
    The vascular endothelial growth factor (VEGF) family of cytokines are important regulators of angiogenesis that have emerged as important targets for the treatment of obesity. While serum VEGF levels rise during obesity, recent studies using genetic models provide conflicting evidence as to whether VEGF prevents or accelerates metabolic dysfunction during obesity. In the current study, we sought to identify the effects of VEGF-A neutralization on parameters of glucose metabolism and insulin action in a dietary mouse model of obesity. Within only 72 h of administration of the VEGF-A-neutralizing monoclonal antibody B.20-4.1, we observed almost complete reversal of high-fat diet-induced insulin resistance principally due to improved insulin sensitivity in the liver and in adipose tissue. These effects were independent of changes in whole-body adiposity or insulin signaling. These findings show an important and unexpected role for VEGF in liver insulin resistance, opening up a potentially novel therapeutic avenue for obesity-related metabolic disease.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism*
  16. Amini R, Azizi Jalilian F, Veerakumarasivam A, Abdullah S, Abdulamir AS, Nadali F, et al.
    Biomed Res Int, 2013;2013:752603.
    PMID: 23509773 DOI: 10.1155/2013/752603
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML). Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1) delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  17. Kadir EA, Sulaiman SA, Yahya NK, Othman NH
    Asian Pac J Cancer Prev, 2013;14(4):2249-54.
    PMID: 23725121
    The study was conducted to determine the effect of Malaysian jungle Tualang Honey (TH) on development of breast cancer induced by the carcinogen 7,12-dimethylbenz(α)anthracene (DMBA) in rats. Forty nulliparous female Sprague-Dawley rats were given 80 mg/kg DMBA then randomly divided into four groups: Group 1 served as a Control while Groups 2, 3 and 4 received 0.2, 1.0 or 2.0 g/kg bodyweight/day of TH, respectively, for 150 days. Results showed that breast cancers in the TH-treated groups had slower size increment and smaller mean tumor size (≤ 2 cm3) compared to Controls (≤ 8 cm3). The number of cancers developing in TH-treated groups was also significantly fewer (P<0.05). Histological grading showed majority of TH-treated group cancers to be of grade 1 and 2 compared to grade 3 in controls. There was an increasing trend of apoptotic index (AI) seen in TH-treated groups with increasing dosage of Tualang Honey, however, the mean AI values of all TH-treated groups were not significantly different from the Control value (p>0.05). In conclusion, Tualang Honey exerted positive modulation effects on DMBA-induced breast cancers in rats in this preliminary study.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  18. Aisha AF, Abu-Salah KM, Alrokayan SA, Ismail Z, Abdulmajid AM
    Pak J Pharm Sci, 2012 Jan;25(1):7-14.
    PMID: 22186303
    Parkia speciosa Hassk is a traditional medicinal plant with strong antioxidant and hypoglycemic properties. This study aims to investigate the total phenolic content, antioxidant, cytotoxic and antiangiogenic effect of eight extracts from P. speciosa empty pods. The extracts were found to contain high levels of total phenols and demonstrated strong antioxidant effect in DPPH scavenging test. In rat aortic rings, P. speciosa extracts significantly inhibited the microvessel outgrowth from aortic tissue explants by more than 50%. The antiangiogenic activity was further confirmed by tube formation on matrigel matrix involving human endothelial cells. Cytotoxic effect was evaluated by XTT test on endothelial cells as a model of angiogenesis versus a panel of human cancer and normal cell lines. Basically the extracts did not show acute cytotoxicity. Morphology examination of endothelial cells indicated induction of autophagy characterized by formation of plenty of cytoplasmic vacuoles. The extracts were found to work by decreasing expression of vascular endothelial growth factor in endothelial cells.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
  19. Kamarulzaman EE, Gazzali AM, Acherar S, Frochot C, Barberi-Heyob M, Boura C, et al.
    Int J Mol Sci, 2015 Oct 12;16(10):24059-80.
    PMID: 26473840 DOI: 10.3390/ijms161024059
    Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism*
  20. Sadikan MZ, Nasir NAA, Agarwal R, Ismail NM
    Biomolecules, 2020 04 05;10(4).
    PMID: 32260544 DOI: 10.3390/biom10040556
    : Oxidative stress plays an important role in retinal neurodegeneration and angiogenesis associated with diabetes. In this study, we investigated the effect of the tocotrienol-rich fraction (TRF), a potent antioxidant, against diabetes-induced changes in retinal layer thickness (RLT), retinal cell count (RCC), retinal cell apoptosis, and retinal expression of vascular endothelial growth factor (VEGF) in rats. Additionally, the efficacy of TRF after administration by two different routes was compared. The diabetes was induced in Sprague-Dawley rats by intraperitoneal injection of streptozotocin. Subsequently, diabetic rats received either oral or topical treatment with vehicle or TRF. Additionally, a group of non-diabetic rats was included with either oral or topical treatment with a vehicle. After 12 weeks of the treatment period, rats were euthanized, and retinas were collected for measurement of RLT, RCC, retinal cell apoptosis, and VEGF expression. RLT and RCC in the ganglion cell layer were reduced in all diabetic groups compared to control groups (p < 0.01). However, at the end of the experimental period, oral TRF-treated rats showed a significantly greater RLT compared to topical TRF-treated rats. A similar observation was made for retinal cell apoptosis and VEGF expression. In conclusion, oral TRF supplementation protects against retinal degenerative changes and an increase in VEGF expression in rats with streptozotocin-induced diabetic retinopathy. Similar effects were not observed after topical administration of TRF.
    Matched MeSH terms: Vascular Endothelial Growth Factor A/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links