OBJECTIVES: To systematically evaluate the safety and efficacy of different antiseptic solutions in preventing CRBSI and other related outcomes in neonates with CVC.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries up to 22 April 2022. We checked reference lists of included trials and systematic reviews that related to the intervention or population examined in this Cochrane Review. SELECTION CRITERIA: Randomised controlled trials (RCTs) or cluster-RCTs were eligible for inclusion in this review if they were performed in the neonatal intensive care unit (NICU), and were comparing any antiseptic solution (single or in combination) against any other type of antiseptic solution or no antiseptic solution or placebo in preparation for central catheter insertion. We excluded cross-over trials and quasi-RCTs.
DATA COLLECTION AND ANALYSIS: We used the standard methods from Cochrane Neonatal. We used the GRADE approach to assess the certainty of the evidence.
MAIN RESULTS: We included three trials that had two different comparisons: 2% chlorhexidine in 70% isopropyl alcohol (CHG-IPA) versus 10% povidone-iodine (PI) (two trials); and CHG-IPA versus 2% chlorhexidine in aqueous solution (CHG-A) (one trial). A total of 466 neonates from level III NICUs were evaluated. All included trials were at high risk of bias. The certainty of the evidence for the primary and some important secondary outcomes ranged from very low to moderate. There were no included trials that compared antiseptic skin solutions with no antiseptic solution or placebo. CHG-IPA versus 10% PI Compared to PI, CHG-IPA may result in little to no difference in CRBSI (risk ratio (RR) 1.32, 95% confidence interval (CI) 0.53 to 3.25; risk difference (RD) 0.01, 95% CI -0.03 to 0.06; 352 infants, 2 trials, low-certainty evidence) and all-cause mortality (RR 0.88, 95% CI 0.46 to 1.68; RD -0.01, 95% CI -0.08 to 0.06; 304 infants, 1 trial, low-certainty evidence). The evidence is very uncertain about the effect of CHG-IPA on CLABSI (RR 1.00, 95% CI 0.07 to 15.08; RD 0.00, 95% CI -0.11 to 0.11; 48 infants, 1 trial; very low-certainty evidence) and chemical burns (RR 1.04, 95% CI 0.24 to 4.48; RD 0.00, 95% CI -0.03 to 0.03; 352 infants, 2 trials, very low-certainty evidence), compared to PI. Based on a single trial, infants receiving CHG-IPA appeared less likely to develop thyroid dysfunction compared to PI (RR 0.05, 95% CI 0.00 to 0.85; RD -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 10 to 50; 304 infants). Neither of the two included trials assessed the outcome of premature central line removal or the proportion of infants or catheters with exit-site infection. CHG-IPA versus CHG-A The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI when applied on the skin of neonates prior to central line insertion (RR 0.80, 95% CI 0.34 to 1.87; RD -0.05, 95% CI -0.22 to 0.13; 106 infants, 1 trial, low-certainty evidence) and CLABSI (RR 1.14, 95% CI 0.34 to 3.84; RD 0.02, 95% CI -0.12 to 0.15; 106 infants, 1 trial, low-certainty evidence), compared to CHG-A. Compared to CHG-A, CHG-IPA probably results in little to no difference in premature catheter removal (RR 0.91, 95% CI 0.26 to 3.19; RD -0.01, 95% CI -0.15 to 0.13; 106 infants, 1 trial, moderate-certainty evidence) and chemical burns (RR 0.98, 95% CI 0.47 to 2.03; RD -0.01, 95% CI -0.20 to 0.18; 114 infants, 1 trial, moderate-certainty evidence). No trial assessed the outcome of all-cause mortality and the proportion of infants or catheters with exit-site infection.
AUTHORS' CONCLUSIONS: Based on current evidence, compared to PI, CHG-IPA may result in little to no difference in CRBSI and mortality. The evidence is very uncertain about the effect of CHG-IPA on CLABSI and chemical burns. One trial showed a statistically significant increase in thyroid dysfunction with the use of PI compared to CHG-IPA. The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI and CLABSI when applied on the skin of neonates prior to central line insertion. Compared to CHG-A, CHG-IPA probably results in little to no difference in chemical burns and premature catheter removal. Further trials that compare different antiseptic solutions are required, especially in low- and middle-income countries, before stronger conclusions can be made.
METHODS: Dissolution kinetics of CHX-HMP were firstly explored using spectroscopy and a colorimetric phosphate assay. Elastomeric ligatures were categorized into 3 groups-acetone-conditioned, ethanol-conditioned, and as received-and were then immersed in 5 mM CHX-HMP suspension or 5 mM chlorhexidine digluconate solution and rinsed. CHX release was measured over 8 weeks, and the effects of conditioning and immersion on elastomeric force and extension at rupture and surface topography were investigated.
RESULTS: CHX-HMP exhibited a gradual equilibration that had not reached equilibrium within 8 weeks, releasing soluble CHX and a mixture of polyphosphate and orthophosphate. CHX digluconate-treated ligatures showed no CHX release, whereas CHX-HMP-treated ligatures showed varying degrees of release. As received, CHX-HMP-treated ligatures showed a modest release of CHX up to 7 days. Acetone conditioning did not enhance CHX-HMP uptake or subsequent CHX release and caused a deterioration in mechanical properties. Ethanol conditioning enhanced CHX-HMP uptake (6×) and led to a sustained CHX release over 8 weeks without affecting mechanical properties.
CONCLUSIONS: Within the inherent limitations of this in-vitro study, CHX-HMP led to a sustained release of CHX from orthodontic elastomeric ligatures after ethanol conditioning. Conditioned and coated elastomeric ligatures may ultimately find application in the prevention of white spot lesions in orthodontic patients.
METHODS: A multicenter randomized clinical trial was conducted on hospitalized stroke survivors. Those in the control group were given standard care of oral hygiene (a manual toothbrush and toothpaste), whereas those in the test group were given intense care of oral hygiene (a powered toothbrush and 1% chlorhexidine oral gel). Oral clinical assessments were carried out, and microbiological samples were collected, using concentrated oral rinse samples at 3 time points: baseline, 3 months, and 6 months.
RESULTS: The prevalence of oral yeast was significantly reduced in the test group at 6 months (P < .05), but no significant difference was observed over time. A significant reduction was observed in the prevalence of Staphylococcus aureus (P < .01) and aerobic and facultative gram-negative bacilli over time (P < .05), but there were no significant differences noted between groups at 6 months. Candida albicans and Klebsiella pneumoniae were the prominent pathogens determined throughout the trial. Kluyvera strains have also been isolated from this cohort.
CONCLUSION: Oral hygiene intervention using a powered tooth brush and 1% chlorhexidine oral gel was effective in reducing the prevalence of oral opportunistic pathogens.
METHODS: Databases including Medline, Embase and bibliographies were searched from inception to 1 April 2023. Randomized controlled trials (RCTs) with 7 days or longer duration of oil pulling with edible oils in comparison to chlorhexidine or other mouthwashes or oral hygiene practice concerning the parameters of plaque index scores (PI), gingival index scores (GI), modified gingival index scores (MGI) and bacteria counts were included. Cochrane's Risk of Bias (ROB) tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework were employed to determine the quality of evidence. Two authors independently conducted study selection and data extraction. Meta-analyses of the effect of oil pulling on the parameters were conducted using an inverse-variance random-effects model.
RESULTS: Twenty-five trials involving 1184 participants were included. Twenty-one trials comparing oil pulling (n = 535) to chlorhexidine (n = 286) and non-chlorhexidine intervention (n = 205) were pooled for meta-analysis. More than half of the trials (n = 17) involved participants with no reported oral health issues. The duration of intervention ranged from 7 to 45 days, with half of the trials using sesame oil. When compared to non-chlorhexidine mouthwash interventions, oil pulling clinically and significantly improved MGI scores (Standardized mean difference, SMD = -1.14; 95% confidence interval [CI]: -1.31, -0.97). Chlorhexidine was more effective in reducing the PI scores compared to oil pulling, with an SMD of 0.33 (95% CI: 0.17, 0.49). The overall quality of the body of evidence was very low.
CONCLUSIONS: There was a probable benefit of oil pulling in improving gingival health. Chlorhexidine remained superior in reducing the amount of plaque, compared to oil pulling. However, there was very low certainty in the evidence albeit the clinically beneficial effect of oil pulling intervention.
METHODS: Using the PRISMA 2020 Protocol, a systematic search of the publications was undertaken from the MEDLINE, CENTRAL, Science Direct, PubMed, and Google Scholars for randomized control trials published through 31st January 2022 to determine the effectiveness of Salvadora persica-extract mouthwash relative to chlorhexidine gluconate as anti-plaque and anti-gingivitis properties.
RESULTS: A total of 1809 titles and abstracts were screened. Of these, twenty-two studies met the inclusion criteria for the systematic review while only sixteen were selected for meta-analysis. The overall effects of standardized mean difference and 95% CI were 0.89 [95% CI 0.09 to 1.69] with a χ2 statistic of 2.54, 15 degrees of freedom (p
METHODS: A single centre, latin-square cross-over, double masked, randomized controlled clinical trial was conducted on 45 chronic generalized gingivitis subjects who were chosen from the dental clinic of MAHSA University, Malaysia. A total of 45 subjects were randomly assigned into one of the three different groups (n = 15 each) using a computer-generated random allocation sequence: Group A Propolis mouthwash; Group B Chlorhexidine mouthwash; and Group C Placebo mouthwash. Supragingival plaque and gingival inflammation were assessed by full mouth Plaque index (PI) and gingival index (GI) at baseline and after 21 days. The study was divided into three phases, each phase lasted for 21 days separated by a washout period of 15 days in between them. Groups A, B and C were treated with 0.2% Propolis, Chlorhexidine, and Placebo mouthwash, respectively, in phase I. The study subjects were instructed to use the assigned mouthwash twice daily for 1 min for 21 days. On day 22nd, the subjects were recalled for measurement of PI and GI. After phase I, mouthwash was crossed over as dictated by the Latin square design in phase II and III.
RESULTS: At baseline, intergroup comparison revealed no statistically significant difference between Groups A, B and C (p > 0.05). On day 21, one-way ANOVA revealed statistically significant difference between the three groups for PI (p
Materials and Methods: A total of 111 subjects who fulfilled the inclusion and exclusion criteria were randomly included in the study. The subjects were recalled after 1 month of the commencement of fixed orthodontic treatment for the recording of baseline data including plaque index (PI), gingival index (GI), and modified papillary bleeding index (MPBI). After recording of the baseline data, the subjects were randomly allocated into each of the intervention groups, i.e., group A (manual tooth brush), group B (powered tooth brush), and group C (manual tooth brush combined with mouthwash) by lottery method. Further, all the subjects were recalled after 1 and 2 months for recording the data.
Results: Regarding plaque levels, it was seen that there was a highly statistically significant difference between the three groups (P = 0.001), with the manual tooth brush combined with chlorhexidine mouthwash group recording the lowest mean PI score of 0.5 ± 0.39. A comparison of the mean GI scores among the groups at the end of 2 months shows a highly statistically significant difference (P = 0.001). The mean MPBI scores at the end of 2 months were highly statistically significant among the three groups (P = 0.001), with the group C recording the lowest mean MPBI score of 0.3 ± 0.3.
Conclusion: The powered tooth brush group subjects exhibited significantly lesser PI, GI, and MPBI scores than the manual tooth brush group at the end of 2 months, whereas the manual tooth brush combined with chlorhexidine mouth wash group subjects showed maximum improvement, having significantly lesser PI and GI scores than the powered tooth brush group.
OBJECTIVE: The chief aim of the study was to evaluate microbial retention on the salivary pellicle on treatment with oral rinses (CHX & EO)/PS (mimicking after meals use of mouth wash/PS).
METHODS: Noordini's Artifical Mouth model was used for developing the single species biofilm with early microbial colonizers of oral biofilm (A. viscosus, Strep. mitis and Strep. sanguinis respectively). The microbial retention on use of oral rinses comprising of CHX and EO as an active ingredients respectively was compared with Curcumin PS. For evaluating the microbial retention, the pellicle with microbial inoculation was developed on the glass beads in the mouth model. Subsequently the respective single specie biofilm was exposed to the mouth wash and PS after inoculation. It mimicked as use of mouth wash/PS after meals. The bacterial count in the dental biofilm was evaluated on serial dilution (CFU/ml). Sterile deionized water was used as a negative control. For qualitative analysis, Scanning electron microscope (SEM) was used to evaluate the microbial count.
RESULTS: From the data it was observed that for the treatment of single species experimental biofilm with commercially available mouth rinses (CHX & EO) and PS (curcumin), there was significant retention for S.mitis, S.sanguinis and A.viscosus. There was no significant difference observed between PS and CHX treated single species biofilm. Whereas a significant difference was observed between EO treated biofilms and CHX/PS treated biofilms (p⩽ 0.05).
CONCLUSION: It can be concluded from the results that curcumin PS and CHX should not be used after meals whereas EO containing mouth rinse can be used to maintain the oral mocroflora.
METHODS: Different volumes of NaOCl were added to CHX (mix 1) or PCA (mix 2). Upon centrifugation, the supernatant and precipitate fractions collected from samples were analyzed using high-performance liquid chromatography. The cytotoxic effects of both fractions were examined on human periodontal ligament and 3T3 fibroblast cell lines.
RESULTS: High-performance liquid chromatographic analysis showed no PCA signal when NaOCl was mixed with CHX (mix 1). In mix 2, the intensity of PCA was decreased when NaOCl was added to PCA, and chromatographic signals, similar to that of CHX/NaOCl, were also observed. The mortality of precipitates exerted on both cell lines was lower compared with that of supernatants.
CONCLUSIONS: The discrepancy in the data from the literature could be caused by the instability of the PCA in the presence of NaOCl. The CHX/NaOCl reaction mixture exhibits a wide range of cytotoxic effects.
OBJECTIVES: To assess the effects of preprocedural mouth rinses used in dental clinics to minimise incidence of infection in dental healthcare providers and reduce or neutralise contamination in aerosols.
SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 4 February 2022.
SELECTION CRITERIA: We included randomised controlled trials and excluded laboratory-based studies. Study participants were dental patients undergoing AGPs. Studies compared any preprocedural mouth rinse used to reduce contaminated aerosols versus placebo, no mouth rinse or another mouth rinse. Our primary outcome was incidence of infection of dental healthcare providers and secondary outcomes were reduction in the level of contamination of the dental operatory environment, cost, change in mouth microbiota, adverse events, and acceptability and feasibility of the intervention.
DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from included studies, assessed the risk of bias in the studies and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data MAIN RESULTS: We included 17 studies with 830 participants aged 18 to 70 years. We judged three trials at high risk of bias, two at low risk and 12 at unclear risk of bias. None of the studies measured our primary outcome of the incidence of infection in dental healthcare providers. The primary outcome in the studies was reduction in the level of bacterial contamination measured in colony-forming units (CFUs) at distances of less than 2 m (intended to capture larger droplets) and 2 m or more (to capture droplet nuclei from aerosols arising from the participant's oral cavity). It is unclear what size of CFU reduction represents a clinically significant amount. There is low- to very low-certainty evidence that chlorhexidine (CHX) may reduce bacterial contamination, as measured by CFUs, compared with no rinsing or rinsing with water. There were similar results when comparing cetylpyridinium chloride (CPC) with no rinsing and when comparing CPC, essential oils/herbal mouthwashes or boric acid with water. There is very low-certainty evidence that tempered mouth rinses may provide a greater reduction in CFUs than cold mouth rinses. There is low-certainty evidence that CHX may reduce CFUs more than essential oils/herbal mouthwashes. The evidence for other head-to-head comparisons was limited and inconsistent. The studies did not provide any information on costs, change in micro-organisms in the patient's mouth or adverse events such as temporary discolouration, altered taste, allergic reaction or hypersensitivity. The studies did not assess acceptability of the intervention to patients or feasibility of implementation for dentists. AUTHORS' CONCLUSIONS: None of the included studies measured the incidence of infection among dental healthcare providers. The studies measured only reduction in level of bacterial contamination in aerosols. None of the studies evaluated viral or fungal contamination. We have only low to very low certainty for all findings. We are unable to draw conclusions regarding whether there is a role for preprocedural mouth rinses in reducing infection risk or the possible superiority of one preprocedural rinse over another. Studies are needed that measure the effect of rinses on infectious disease risk among dental healthcare providers and on contaminated aerosols at larger distances with standardised outcome measurement.
MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days.
RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13).
CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group.
CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.
METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.
RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.
CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.
MATERIALS AND METHODS: Matured, healthy and disease-free leaves of Eucalyptus globulus were collected. The leaves were washed under tap water and finally dried in an oven at a temperature of 45°C for 48 hours. The dried plants were ground in an electric blender to make them into a powder. The powder was mixed with 100% ethanol and kept it inside a shaker overnight at 35°C. The mixture was centrifuged for 10 minutes at 2,500 rpm. Three different concentrations (10%, 50%, and 100% v/v) were used as antibacterial agents. Chlorhexidine (0.2%) was considered as positive control and dimethyl formamide was considered as negative control against P. gingivalis and A. actinomycetemcomitans. The disc diffusion method was used to determine the extract's antibacterial activity against the test organisms. A digital Vernier caliper was used to measure the diameter of antibacterial activity showing the zone of inhibition in millimeters.
RESULTS: Eucalyptus globulus with 100% concentration showed a maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis (5.38 ± 0.32 mm, 4.82 ± 0.11 mm) followed by 50% and 10% accordingly. The negative control of dimethyl formamide showed a zone of inhibition of 0.48 ± 0.96 mm and 0.63 ± 0.20 mm against A. actinomycetemcomitans and P. gingivalis. The positive control of 0.2% chlorhexidine showed a zone of inhibition of 8.46 ± 1.02 mm and 7.18 ± 0.54 mm against A. actinomycetemcomitans and P. gingivalis. The ANOVA test showed a highly significant antibacterial efficacy in 0.2% chlorhexidine and 100% concentration Eucalyptus globulus.
CONCLUSION: A significant maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis was showed by 100% concentration of Eucalyptus globulus.
CLINICAL SIGNIFICANCE: Other than the systemic diseases treatment, Eucalyptus globulus also serves as an effective promising alternative to antibiotics in the prevention of oral infections because of the natural phytochemicals existing in them.