Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Faisal M, Iqbal A, Adam F, Jothiramalingam R
    Water Sci Technol, 2021 Aug;84(3):576-595.
    PMID: 34388120 DOI: 10.2166/wst.2021.244
    Cu doped InVO4 (xCu-InVO4 (x = 0.06-0.15 wt %) was synthesized by a facile one-pot hydrothermal method for the removal of methylene blue (MB) under LED light irradiation. The X-ray photoelectron spectroscopy (XPS) analysis indicated the coexistence of V5+ and V4+ species due to the O-deficient nature of the xCu-InVO4. The synthesized photocatalysts displayed a morphology of spherical and square shaped particles (20-40 nm) and micro-sized rectangle rods with a length range of 100-200 μm. The xCu-InVO4 exhibited superior adsorption and photodegradation efficiency compared to pristine InVO4 and TiO2 due to the presence of O2 vacancies, V4+/V5+ species, and Cu dopant. The optimum reaction conditions were found to be 5 mg L-1 (MB concentration), pH 6, and 100 mg of photocatalyst mass with a removal efficiency and mineralization degree of 100% and 96.67%, respectively. The main active species responsible for the degradation of MB were •OH radicals and h+. Reusability studies indicated that the 0.13Cu-InVO4 was deactivated after a single cycle of photocatalytic reaction due to significant leaching of V4+ and Cu2+ species.
    Matched MeSH terms: Doping in Sports*
  2. Park YK, Jung SC, Jung HY, Foong SY, Lam SS, Kim SC
    Environ Sci Pollut Res Int, 2021 May;28(19):24552-24557.
    PMID: 32533488 DOI: 10.1007/s11356-020-09575-6
    Oxidation of o-xylene was performed using alkaline battery-based catalyst doped with platinum to investigate the properties and activities. O-xylene was selected as the model of volatile organic compound (VOC) in this work. Physicochemical properties of the selected catalysts were characterized by FE/TEM (field emission transmission electron microscopy), BET (Brunauer-Emmett-Teller) analysis, XRD (X-ray powder diffraction), SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectroscopy), and H2-TPR (hydrogen temperature programmed reduction). Major elements of the spent alkaline battery-based catalyst treated with sulfuric acid solution [SAB (400) catalyst] were manganese, zinc, iron, oxygen, carbon, chlorine, aluminum, sodium, silicon, and potassium. Increasing the doping amount of platinum on SAB (400) catalyst from 0.1 to 1 wt% increased particle size of platinum and lowered the temperature of TPR (TTP) for SAB (400) catalyst. Better redox properties were achieved with an increase in the o-xylene conversion according to the doping amount of platinum. When GHSV (gas hourly space velocity) was 40,000 h-1, o-xylene was oxidized completely over SAB (400) catalyst and 1.0 wt% Pt/SAB(400) catalyst at temperatures of 400 °C and 280 °C, respectively.
    Matched MeSH terms: Doping in Sports*
  3. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, et al.
    Environ Res, 2021 08;199:111312.
    PMID: 34019891 DOI: 10.1016/j.envres.2021.111312
    Herein we reported the effect of doping and addition of surfactant on SnO2 nanostructures for enhanced photocatalytic activity. Pristine SnO2, Zn-SnO2 and SDS-(Zn-SnO2) was prepared via simple co-precipitation method and the product was annealed at 600 °C to obtain a clear phase. The structural, optical, vibrational, morphological characteristics of the synthesized SnO2, Zn-SnO2 and SDS-(Zn-SnO2) product were investigated. SnO2, Zn-SnO2 and SDS-(Zn-SnO2) possess crystallite size of 20 nm, 19 nm and 18 nm correspondingly with tetragonal structure and high purity. The metal oxygen vibrations were present in FT-IR spectra. The obtained bandgap energies of SnO2, Zn-SnO2 and SDS-(Zn-SnO2) were 3.58 eV, 3.51 eV and 2.81 eV due to the effect of dopant and surfactant. This narrowing of bandgap helped in the photocatalytic activity. The morphology of the pristine sample showed poor growth of nanostructures with high level of agglomeration which was effectively reduced for other two samples. Product photocatalytic action was tested beneath visible light of 300 W. SDS-(Zn-SnO2) nanostructure efficiency showed 90% degradation of RhB dye which is 2.5 times higher than pristine sample. Narrow bandgap, crystallite size, better growth of nanostructures paved the way for SDS-(Zn-SnO2) to degrade the toxic pollutant. The superior performance and individuality of SDS-(Zn-SnO2) will makes it a potential competitor on reducing toxic pollutants from wastewater in future research.
    Matched MeSH terms: Doping in Sports*
  4. Tan LL, Ong WJ, Chai SP, Mohamed AR
    Chem Commun (Camb), 2014 Jul 4;50(52):6923-6.
    PMID: 24841282 DOI: 10.1039/c4cc01304b
    A facile and dopant-free strategy was employed to fabricate oxygen-rich TiO2 (O2-TiO2) with enhanced visible light photoactivity. Such properties were achieved by the in situ generation of oxygen through the thermal decomposition of the peroxo-titania complex. The O2-TiO2 photocatalyst exhibited high photoactivity towards CO2 reduction under visible light.
    Matched MeSH terms: Doping in Sports
  5. Shaifudin MS, Ghazali MSM, Kamaruzzaman WMIWM, Wan Abdullah WR, Kassim S, Ismail NQA, et al.
    Materials (Basel), 2021 Feb 03;14(4).
    PMID: 33546094 DOI: 10.3390/ma14040702
    This paper investigated the effects of Pr6O11 and Co3O4 on the electrical properties of ZnO-BaTiO3 varistor ceramics. The Pr6O11 doping has a notable influence on the characteristics of the nonlinear coefficient, varistor voltage, and leakage current where the values varied from 2.29 to 2.69, 12.36 to 68.36 V/mm and 599.33 to 548.16 µA/cm2, respectively. The nonlinear varistor coefficient of 5.50 to 7.15 and the varistor voltage of 7.38 to 8.10 V/mm was also influenced by the use of Co3O4 as a dopant. When the amount of Co3O4 was above 0.5 wt.%, the leakage current increased from 202.41 to 302.71 μA/cm2. The varistor ceramics with 1.5 wt.% Pr6O11 shows good nonlinear electrical performance at higher breakdown voltage and reduced the leakage current of the ceramic materials. Besides, the varistor sample that was doped with 0.5 wt.% Co3O4 was able to enhance the nonlinear electrical properties at low breakdown voltage with a smaller value of leakage current.
    Matched MeSH terms: Doping in Sports
  6. Dey D, De D, Ahmadian A, Ghaemi F, Senu N
    Nanoscale Res Lett, 2021 Jan 29;16(1):20.
    PMID: 33512575 DOI: 10.1186/s11671-020-03467-x
    Doping is the key feature in semiconductor device fabrication. Many strategies have been discovered for controlling doping in the area of semiconductor physics during the past few decades. Electrical doping is a promising strategy that is used for effective tuning of the charge populations, electronic properties, and transmission properties. This doping process reduces the risk of high temperature, contamination of foreign particles. Significant experimental and theoretical efforts are demonstrated to study the characteristics of electrical doping during the past few decades. In this article, we first briefly review the historical roadmap of electrical doping. Secondly, we will discuss electrical doping at the molecular level. Thus, we will review some experimental works at the molecular level along with we review a variety of research works that are performed based on electrical doping. Then we figure out importance of electrical doping and its importance. Furthermore, we describe the methods of electrical doping. Finally, we conclude with a brief comparative study between electrical and conventional doping methods.
    Matched MeSH terms: Doping in Sports
  7. Mondal AK, Mohamed MA, Ping LK, Mohamad Taib MF, Samat MH, Mohammad Haniff MAS, et al.
    Materials (Basel), 2021 Jan 28;14(3).
    PMID: 33525586 DOI: 10.3390/ma14030604
    Gallium oxide (Ga2O3) is a promising wide-band-gap semiconductor material for UV optical detectors and high-power transistor applications. The fabrication of p-type Ga2O3 is a key problem that hinders its potential for realistic power applications. In this paper, pure α-Ga2O3 and Ca-doped α-Ga2O3 band structure, the density of states, charge density distribution, and optical properties were determined by a first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. It was found that calcium (Ca) doping decreases the bandgap by introducing deep acceptor energy levels as the intermediate band above the valence band maximum. This intermediate valence band mainly consists of Ca 3p and O 2p orbitals and is adequately high in energy to provide an opportunity for p-type conductivity. Moreover, Ca doping enhances the absorptivity and reflectivity become low in the visible region. Aside, transparency decreases compared to the pure material. The optical properties were studied and clarified by electrons-photons interband transitions along with the complex dielectric function's imaginary function.
    Matched MeSH terms: Doping in Sports
  8. Haniff MASM, Hafiz SM, Huang NM, Rahman SA, Wahid KAA, Syono MI, et al.
    ACS Appl Mater Interfaces, 2017 May 03;9(17):15192-15201.
    PMID: 28418234 DOI: 10.1021/acsami.7b02833
    This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.
    Matched MeSH terms: Doping in Sports
  9. Zainal N, Azimah E, Hassan Z, Abu Hassan H, Hashim M
    Sains Malaysiana, 2014;43:1557-1564.
    In this work, the emission efficiency of InxGa1-xN based light emitting diodes (LEDs) had been numerically investigated with the variation of the number of quantum well. From our calculation, we found that non-uniformity of carriers distribution (especially electron) in the wells leads to serious inhomogeneity of radiative recombination distribution that would degrade the efficiency of the LED with more wells. However, the problem was minimized when the selected quantum barriers were doped with a reasonable doping level. Comparison with other reported experimental works were also included. At the end of this work, we proposed several types of preferable LEDs designs with optimum structural parameters.
    Matched MeSH terms: Doping in Sports
  10. Kean Ping L, Mohamed MA, Kumar Mondal A, Mohamad Taib MF, Samat MH, Berhanuddin DD, et al.
    Micromachines (Basel), 2021 Mar 24;12(4).
    PMID: 33804978 DOI: 10.3390/mi12040348
    The crystal structure, electron charge density, band structure, density of states, and optical properties of pure and strontium (Sr)-doped β-Ga2O3 were studied using the first-principles calculation based on the density functional theory (DFT) within the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE). The reason for choosing strontium as a dopant is due to its p-type doping behavior, which is expected to boost the material's electrical and optical properties and maximize the devices' efficiency. The structural parameter for pure β-Ga2O3 crystal structure is in the monoclinic space group (C2/m), which shows good agreement with the previous studies from experimental work. Bandgap energy from both pure and Sr-doped β-Ga2O3 is lower than the experimental bandgap value due to the limitation of DFT, which will ignore the calculation of exchange-correlation potential. To counterbalance the current incompatibilities, the better way to complete the theoretical calculations is to refine the theoretical predictions using the scissor operator's working principle, according to literature published in the past and present. Therefore, the scissor operator was used to overcome the limitation of DFT. The density of states (DOS) shows the hybridization state of Ga 3d, O 2p, and Sr 5s orbital. The bonding population analysis exhibits the bonding characteristics for both pure and Sr-doped β-Ga2O3. The calculated optical properties for the absorption coefficient in Sr doping causes red-shift of the absorption spectrum, thus, strengthening visible light absorption. The reflectivity, refractive index, dielectric function, and loss function were obtained to understand further this novel work on Sr-doped β-Ga2O3 from the first-principles calculation.
    Matched MeSH terms: Doping in Sports
  11. Croot A, Othman MZ, Conejeros S, Fox N, Allan N
    J Phys Condens Matter, 2018 Aug 31.
    PMID: 30168449 DOI: 10.1088/1361-648X/aade16
    Substitutional clusters of multiple light element dopants are a promising route to the elusive shallow donor in diamond. To understand the behaviour of co-dopants, this report presents an extensive first principles study of possible clusters of boron and nitrogen. We use periodic hybrid density functional calculations to predict the geometry, stability and electronic excitation energies of a range of clusters containing up to five N and/or B atoms. Excitation energies from hybrid calculations are compared to those from the empirical marker method, and are in good agreement. When a boron-rich or nitrogen-rich cluster consists of 3 - 5 atoms, the minority dopant element - a nitrogen or boron atom respectively - can be in either a central or peripheral position. We find B-rich clusters are most stable when N sits centrally, whereas N-rich clusters are most stable with B in a peripheral position. In the former case, excitation energies mimic those of the single boron acceptor, while the latter produce deep levels in the band-gap. Implications for probable clusters that would arise in high-pressure high-temperature (HPHT) co-doped diamond and their properties are discussed.
    Matched MeSH terms: Doping in Sports
  12. Joseph CG, Taufiq-Yap YH, Musta B, Sarjadi MS, Elilarasi L
    Front Chem, 2020;8:568063.
    PMID: 33628762 DOI: 10.3389/fchem.2020.568063
    Over the last decade, interest in the utilization of solar energy for photocatalysis treatment processes has taken centre-stage. Researchers had focused on doping TiO2 with SiO2 to obtain an efficient degradation rate of various types of target pollutants both under UV and visible-light irradiation. In order to further improve this degradation effect, some researchers resorted to incorporate plasmonic metal nanoparticles such as silver and gold into the combined TiO2-SiO2 to fully optimize the TiO2-SiO2's potential in the visible-light region. This article focuses on the challenges in utilizing TiO2 in the visible-light region, the contribution of SiO2 in enhancing photocatalytic activities of the TiO2-SiO2 photocatalyst, and the ability of plasmonic metal nanoparticles (Ag and Au) to edge the TiO2-SiO2 photocatalyst toward an efficient solar photocatalyst.
    Matched MeSH terms: Doping in Sports
  13. Iwasaki T, Muruganathan M, Schmidt ME, Mizuta H
    Nanoscale, 2017 Jan 26;9(4):1662-1669.
    PMID: 28074959 DOI: 10.1039/c6nr08117g
    The transformation of systematic vacuum and hydrogen annealing effects in graphene devices on the SiO2 surface is reported based on experimental and van der Waals interaction corrected density functional theory (DFT) simulation results. Vacuum annealing removes p-type dopants and reduces charged impurity scattering in graphene. Moreover, it induces n-type doping into graphene, leading to the improvement of the electron mobility and conductivity in the electron transport regime, which are reversed by exposing to atmospheric environment. On the other hand, annealing in hydrogen/argon gas results in smaller n-type doping along with a decrease in the overall conductivity and carrier mobility. This degradation of the conductivity is irreversible even the graphene devices are exposed to ambience. This was clarified by DFT simulations: initially, silicon dangling bonds were partially terminated by hydrogen, subsequently, the remaining dangling bonds became active and the distance between the graphene and SiO2 surface decreased. Moreover, both annealing methods affect the graphene channel including the vicinity of the metal contacts, which plays an important role in asymmetric carrier transport.
    Matched MeSH terms: Doping in Sports
  14. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
    Matched MeSH terms: Doping in Sports*
  15. Jaafar Z, Wan Hamat NH
    J Sports Med Phys Fitness, 2020 May;60(5):794-799.
    PMID: 32037780 DOI: 10.23736/S0022-4707.20.09623-1
    BACKGROUND: Doping in young athletes at present is on escalation. A few doping cases involving athletes from South East Asia (SEA) countries have been reported. The objective of this study is to determine current perceived doping and antidoping climate in Malaysia through an exploration of doping-related knowledge, perception and beliefs among the university athletes.

    METHODS: A survey was conducted during the Malaysian Universities Games in Kuala Lumpur 2014. A total of 614 athletes completed the questionnaires on perception, specific knowledge, environment, behavior and beliefs towards doping.

    RESULTS: From this survey, we found that their knowledge about doping and antidoping was poor, they have misguided beliefs and perception about doping, and their environment seems to be favorable for performance enhancing substances usage in the future. We grouped the athletes based on their doping's environment into ultraclean, potential and high-risk group; and the results showed that they have a significant relationship with their knowledge, beliefs and perception about doping in sports, P<0.001. About 1.5-1.8% of the studied athletes have positive behavior towards doping practice; doping use, χ2 =24.6(2) P<0.001 and doping willingness, χ2 =17.15(2) P<0.001.

    CONCLUSIONS: Doping behavior and doping risks in this region are still under-studied. Hence, we recommended that every South East Asia countries would identify the potential risks of doping among their young athletes, and collectively collaborating in managing doping issues involving this region. Special attention should be given to doping environment as it has negative influences on athletes behavior towards doping.

    Matched MeSH terms: Doping in Sports/psychology*
  16. Singh GK, Jimenez M, Newman R, Handelsman DJ
    Drug Test Anal, 2014 Apr;6(4):336-41.
    PMID: 23606665 DOI: 10.1002/dta.1481
    Urine provides a convenient non-invasive alternative to blood sampling for measurement of certain hormones. Urinary luteinizing hormone (LH) measurements have been used for endocrinology research and anti-doping testing. However, the commercially available LH immunoassays are developed and validated for human blood samples but not urine so that LH assays intended for use with urine samples need thorough validation. Therefore, the present study evaluated the measurement of urinary LH immunoreactivity using previously validated immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after prolonged frozen storage. LH was measured in serial urine samples following administration of a single injection of one of two doses of recombinant human chorionic hormone (rhCG) with assays run at the end of study (2008) and again after four years of frozen (-20 °C) storage where samples were stored without adding preservatives. The ICL assay showed quantitatively reproducible LH measurements after prolonged -20 °C storage. However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with a further proportionate reduction after four years of sample storage (2012). Yet, both the assays displayed similar patterns of the time-course of urine LH measurement both before and after four years of frozen storage. In conclusion, we found that both immunoassays are suitable for urinary LH measurements with ICL assay being more robust for quantitative urinary LH measurement such as for anti-doping purposes, whereas the IF could be applicable for research studies where urine LH levels are compared within-study but not in absolute terms.
    Matched MeSH terms: Doping in Sports
  17. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
    Matched MeSH terms: Doping in Sports
  18. Shaker LM, Al-Amiery AA, Kadhum AAH, Takriff MS
    Nanomaterials (Basel), 2020 Oct 15;10(10).
    PMID: 33076278 DOI: 10.3390/nano10102028
    Many people suffer from myopia or hyperopia due to the refractive errors of the cornea all over the world. The use of high refractive index (RI), Abbe number (νd), and visible light transmittance (T%) polymeric contact lenses (CLs) holds great promise in vision error treatment as an alternative solution to the irreversible laser-assisted in situ keratomileusis (LASIK) surgery. Titanium dioxide nanoparticles (TiO2 NPs) have been suggested as a good candidate to rise the RI and maintain high transparency of a poly(methyl methacrylate) (PMMA)-TiO2 nanocomposite. This work includes a preparation of TiO2 NPs using the sol gel method as well as a synthesis of pure PMMA by free radical polarization and PMMA-TiO2 CLs using a cast molding method of 0.005 and 0.01 w/v concentrations and a study of their effect on the aberrated human eye. ZEMAX optical design software was used for eye modeling based on the Liou and Brennan eye model and then the pure and doped CLs were applied. Ocular performance was evaluated by modulation transfer function (MTF), spot diagram, and image simulation. The used criteria show that the best vision correction was obtained by the CL of higher doping content (p < 0.0001) and that the generated spherical and chromatic aberrations in the eye had been reduced.
    Matched MeSH terms: Doping in Sports
  19. Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Rehman M, et al.
    Nanomaterials (Basel), 2021 Feb 10;11(2).
    PMID: 33578945 DOI: 10.3390/nano11020451
    Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are successfully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial properties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing conditions and concentration of precursors leads to the formation of pine needles and sea urchin-like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed against Gram-negative (Pseudomonasaeruginosa,Klebsiellapneumonia,Escherichiacoli) and Gram-positive (Staphylococcusaureus) bacteria via the agar well diffusion method. Zn doped s are found to have more effective bacterial resistance than pure CuO. The improved antibacterial activity is attributed to the reactive oxygen species (ROS) generation.
    Matched MeSH terms: Doping in Sports
  20. Al-Khalqi EM, Abdul Hamid MA, Al-Hardan NH, Keng LK
    Sensors (Basel), 2021 Mar 17;21(6).
    PMID: 33802968 DOI: 10.3390/s21062110
    For highly sensitive pH sensing, an electrolyte insulator semiconductor (EIS) device, based on ZnO nanorod-sensing membrane layers doped with magnesium, was proposed. ZnO nanorod samples prepared via a hydrothermal process with different Mg molar ratios (0-5%) were characterized to explore the impact of magnesium content on the structural and optical characteristics and sensing performance by X-ray diffraction analysis (XRD), atomic force microscopy (AFM), and photoluminescence (PL). The results indicated that the ZnO nanorods doped with 3% Mg had a high hydrogen ion sensitivity (83.77 mV/pH), linearity (96.06%), hysteresis (3 mV), and drift (0.218 mV/h) due to the improved crystalline quality and the surface hydroxyl group role of ZnO. In addition, the detection characteristics varied with the doping concentration and were suitable for developing biomedical detection applications with different detection elements.
    Matched MeSH terms: Doping in Sports
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links