Displaying publications 1 - 20 of 36 in total

  1. Hu Y, Xie Y, Su Q, Fu J, Chen J, Liu Y
    Foodborne Pathog Dis, 2023 Nov;20(11):521-530.
    PMID: 37722019 DOI: 10.1089/fpd.2023.0039
    The human gut flora is highly diverse. Most lactic acid bacteria (LAB) are widely used as probiotics in human and animal husbandry and have a variety of physiological benefits. This article mainly studied the bacteriostatic ability of LAB against four pathogenic bacteria, gastrointestinal environment tolerance, and adhesion ability to Caco-2 cells. The genome of Lactiplantibacillus plantarum L461 was sequenced and analyzed. The results showed that strains F512, L461, and D469 had the most significant inhibitory effects on Escherichia coli, Salmonella enterica B, Staphylococcus aureus, and Listeria monocytogenes. In addition, strains L461, C502, and P231 showed good tolerance after exposure to simulated gastric fluid for 0-4 h. Strains C502, H781, and L461 showed good tolerance in simulated intestinal fluid. Strains L461 and H781 showed good adhesion to Caco-2 cells. The number of viable bacteria was more than 60. Therefore, we screened L. plantarum L461 from 12 LAB strains through three aspects of evaluation, and conducted whole genome sequencing and analysis. Sequencing results showed that L. plantarum L461 had more defense mechanisms and phage annotation genes than L. plantarum WCFS1. Virulence factor studies showed that L. plantarum L461 has iron absorption system and adhesion-related gene annotation, indicating that L. plantarum L461 has survival advantage in intestinal tract. The predicted results showed that there were eight phages with phage resistance in L. plantarum L461. L. plantarum L461 is sensitive to several antibiotics, notably penicillin and oxacillin. In summary, the results of this study prove that L. plantarum L461 has good prebiotic function and is safe. Therefore, L. plantarum L461 can be safely used as a potential functional probiotic.
    Matched MeSH terms: Lactobacillales*
  2. Yap PC, Ayuhan N, Woon JJ, Teh CSJ, Lee VS, Azman AS, et al.
    Molecules, 2021 Mar 19;26(6).
    PMID: 33808805 DOI: 10.3390/molecules26061727
    A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.
    Matched MeSH terms: Lactobacillales/isolation & purification; Lactobacillales/chemistry*
  3. Li S, Tao Y, Li D, Wen G, Zhou J, Manickam S, et al.
    Chemosphere, 2021 Aug;276:130090.
    PMID: 33740651 DOI: 10.1016/j.chemosphere.2021.130090
    In this study, 4 Lactobacillus plantarum strains and 5 Lactobacillus fermentum strains adapting well to the unfavorable fruit system were isolated under different fruit environments. The fermentation ability of these autochthonous lactic acid bacteria (LAB) strains in blueberry juice, and the influence of microbial metabolism on juice composition were explored. After 48 h of fermentation, the viable cell counts exceeded 10.0 log CFU/mL, malic acid content decreased from 511.47 ± 10.50 mg/L to below 146.38 ± 3.79 mg/L, and lactic acid content increased from 0 mg/L to above 2184.90 ± 335.80 mg/L. Moreover, the metabolism of these strains exerted a profound influence on the phenolic composition of juice. Total phenolic content in blueberry juice increased by 6.1-81.2% under lactic acid fermentation, and the antioxidant capacity in vitro enhanced by at least 34.0%. Anthocyanin content showed a declining trend, while the profile of non-anthocyaninic phenolics exhibited complex changes. The increments of rutin, myricetin and gallic acid contents through 48 h lactic acid fermentation exceeded 136%, 71% and 38%, respectively. Instead, the contents of p-hydroxybenzoic acid and caffeic acid decreased with fermentation. Overall, Lactobacillus plantarum LSJ-TY-HYB-T9 and LSJ-TY-HYB-T7, and Lactobacillus fermentum LSJ-TY-HYB-C22 and LSJ-TY-HYB-L16 could be the suitable strains to produce fermented fruit juices, including blueberry in practical applications.
    Matched MeSH terms: Lactobacillales*
  4. Liu S, Lu SY, Qureshi N, Enshasy HAE, Skory CD
    Probiotics Antimicrob Proteins, 2022 Dec;14(6):1170-1183.
    PMID: 35995909 DOI: 10.1007/s12602-022-09976-8
    Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.
    Matched MeSH terms: Lactobacillales*
  5. Suria MM, Yap PC, Lov VL, AbuBakar S, Lee HY
    Trop Biomed, 2022 Dec 01;39(4):499-503.
    PMID: 36602207 DOI: 10.47665/tb.39.4.004
    Aedes albopictus poses a public health risk in tropical countries and temperate countries in recent decades due to its capability to transmit various human arboviruses including dengue, yellow fever, and chikungunya. Vector control is the key for preventing transmission of these pathogenic viruses. Improving the effectiveness of currently utilized collection methods, such as ovitraps, is important for best species abundance monitoring, assessment of the threat of arbovirus transmission, and optimizing control activities. Therefore, this study aimed to assess the potential use of lactic acid bacteria (LAB) waste as an infusion-baited ovitrap for Aedes collection. The performance of overnight tap water, grass hay infusion and LAB waste infusion were compared for their ability in attracting gravid female Ae. albopictus. In this study, the LAB waste infusion was substantially more alluring to Ae. albopictus mosquitoes than the two controls grass hay infusion and tap water.
    Matched MeSH terms: Lactobacillales*
  6. Abdul Samah O, Ibrahim N, Alimon H, Abdul Karim MI
    World J Microbiol Biotechnol, 1993 Sep;9(5):603-4.
    PMID: 24420212 DOI: 10.1007/BF00386306
    Acetic and lactic acid bacteria on fermented cocoa beans were maximally 2.0×10(6) and 1.9×10(6) c.f.u./g wet wt, respectively. Acetic and lactic acids were detected on the second and fourth days of fermentation and were maximally 140 and 45 mg/10 g beans, respectively. There was a positive correlation between the sizes of the relevant microbial populations and the amounts of acids produced during fermentation.
    Matched MeSH terms: Lactobacillales
  7. Nurfarhana Syed Malik, Mohd. Nizam Lani, Fauziah Tufail Ahmad
    This study was done to determine the effect of pasteurization on the stability of lactic acid bacteria (LAB) and its enzyme in raw and pasteurized cow’s and goat’s milk. The total viable count for plate count of the bacterial growth concentration was higher in both pasteurized cow’s and goat’s milk at 2.48 log CFU/ml. This is followed by raw cow’s milk (1.59 log CFU/ml) and raw goat’s milk (0.65 log CFU/ml). Lactic acid bacteria (LAB) was found to be similar in both raw cow’s and goat’s milk (p>0.05), and pasteurized milk of both animals also contained the same amount of LAB (p>0.05). LAB was still detected in pasteurized milk (p
    Matched MeSH terms: Lactobacillales
  8. Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE
    FEMS Microbiol Lett, 2018 10 01;365(20).
    PMID: 30169778 DOI: 10.1093/femsle/fny213
    Lactic acid bacteria constitute a diverse group of industrially significant, safe microorganisms that are primarily used as starter cultures and probiotics, and are also being developed as production systems in industrial biotechnology for biocatalysis and transformation of renewable feedstocks to commodity- and high-value chemicals, and health products. Development of strains, which was initially based mainly on natural approaches, is also achieved by metabolic engineering that has been facilitated by the availability of genome sequences and genetic tools for transformation of some of the bacterial strains. The aim of this paper is to provide a brief overview of the potential of lactic acid bacteria as biological catalysts for production of different organic compounds for food and non-food sectors based on their diversity, metabolic- and stress tolerance features, as well as the use of genetic/metabolic engineering tools for enhancing their capabilities.
    Matched MeSH terms: Lactobacillales/growth & development*; Lactobacillales/metabolism*
  9. Ooi MF, Foo HL, Loh TC, Mohamad R, Rahim RA, Ariff A
    Sci Rep, 2021 Apr 07;11(1):7617.
    PMID: 33828119 DOI: 10.1038/s41598-021-87081-6
    Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.
    Matched MeSH terms: Lactobacillales/growth & development; Lactobacillales/metabolism
  10. Lee FH, Wan SY, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, et al.
    Int J Mol Sci, 2019 Oct 09;20(20).
    PMID: 31600952 DOI: 10.3390/ijms20204979
    Biotransformation via solid state fermentation (SSF) mediated by microorganisms is a promising approach to produce useful products from agricultural biomass. Lactic acid bacteria (LAB) that are commonly found in fermented foods have been shown to exhibit extracellular proteolytic, β-glucosidase, β-mannosidase, and β-mannanase activities. Therefore, extracellular proteolytic, cellulolytic, and hemicellulolytic enzyme activities of seven Lactobacillus plantarum strains (a prominent species of LAB) isolated from Malaysian foods were compared in this study. The biotransformation of palm kernel cake (PKC) biomass mediated by selected L. plantarum strains was subsequently conducted. The results obtained in this study exhibited the studied L. plantarum strains produced versatile multi extracellular hydrolytic enzyme activities that were active from acidic to alkaline pH conditions. The highest total score of extracellular hydrolytic enzyme activities were recorded by L. plantarum RI11, L. plantarum RG11, and L. plantarum RG14. Therefore, they were selected for the subsequent biotransformation of PKC biomass via SSF. The hydrolytic enzyme activities of treated PKC extract were compared for each sampling interval. The scanning electron microscopy analyses revealed the formation of extracellular matrices around L. plantarum strains attached to the surface of PKC biomass during SSF, inferring that the investigated L. plantarum strains have the capability to grow on PKC biomass and perform synergistic secretions of various extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes that were essential for the effective biodegradation of PKC. The substantial growth of selected L. plamtraum strains on PKC during SSF revealed the promising application of selected L. plantarum strains as a biotransformation agent for cellulosic biomass.
    Matched MeSH terms: Lactobacillales/isolation & purification; Lactobacillales/metabolism*
  11. Jawan R, Abbasiliasi S, Tan JS, Kapri MR, Mustafa S, Halim M, et al.
    Microorganisms, 2021 Mar 12;9(3).
    PMID: 33809201 DOI: 10.3390/microorganisms9030579
    Bacteriocin-like inhibitory substances (BLIS) produced by Lactococcus lactis Gh1 had shown antimicrobial activity against Listeria monocytogenes ATCC 15313. Brain Heart Infusion (BHI) broth is used for the cultivation and enumeration of lactic acid bacteria, but there is a need to improve the current medium composition for enhancement of BLIS production, and one of the approaches is to model the optimization process and identify the most appropriate medium formulation. Response surface methodology (RSM) and artificial neural network (ANN) models were employed in this study. In medium optimization, ANN (R2 = 0.98) methodology provided better estimation point and data fitting as compared to RSM (R2 = 0.79). In ANN, the optimal medium consisted of 35.38 g/L soytone, 16 g/L fructose, 3.25 g/L sodium chloride (NaCl) and 5.40 g/L disodium phosphate (Na2HPO4). BLIS production in optimal medium (717.13 ± 0.76 AU/mL) was about 1.40-fold higher than that obtained in nonoptimised (520.56 ± 3.37 AU/mL) medium. BLIS production was further improved by about 1.18 times higher in 2 L stirred tank bioreactor (787.40 ± 1.30 AU/mL) as compared to that obtained in 250 mL shake flask (665.28 ± 14.22 AU/mL) using the optimised medium.
    Matched MeSH terms: Lactobacillales
  12. Fathiah Masduki, Chong, Chou Min, Murni Karim
    In the recent decades, lactic acid bacteria (LAB) in aquatic organism have been one of the major interesting research subjects due to their various existence strains in fish microbiota. Moreover, LABs are sometimes abundant in the intestine of several fish species. Many recent papers indicated that several LAB strains are harmless and have been reported for beneficial effects on fish health. There was also converging evidence that led us for more research and findings regarding LAB as a promising probiotics in aquaculture. This article provides an overview of the variability of LAB in gastrointestinal (GI) tract of fish and the development of this species as probiotics. LAB was known able to colonise the gut, and has antagonistic activity against some fish pathogens. This harmless bactreriocin-producing strain may confer benefits in increasing disease resistance, improving nutrient digestibility and growth of the host animals. In addition, these strains may reduce the need of antibiotics usage in future aquaculture industry.
    Matched MeSH terms: Lactobacillales
  13. Idoui T, Karam N
    Sains Malaysiana, 2016;45:347-353.
    The objective of this study was to investigate the effect of autochthonous Lactobacillus plantarum feeding on growth performance, carcass traits, serum composition and faecal microflora of broiler chickens. The results showed a significant positive effect (p< 0.05) of probiotic on body weight and feed conversion ratio. Coliform counts in the fecal matter of broiler chickens receiving probiotic were lower than the analogous population in control birds (p<0.05). In contrary, lactic acid bacteria (LAB) number increased (p<0.05) in fecal matter of experimental group. At the end of the study, the degree of serum cholesterol reduction resulted in a 20.31% compared to the control group (p<0.05). The experimental group had significantly lower serum triglycerides (p<0.05). It was concluded that autochthonous probiotic improved growth and feed efficiency in broilers chickens and considering the improvements in carcass traits. This probiotic possess the property of reducing cholesterol and triglycerides in the blood and possess a positive effect on the gut microflora.
    Matched MeSH terms: Lactobacillales
  14. Lim PS, Loke CF, Ho YW, Tan HY
    J Appl Microbiol, 2020 Nov;129(5):1374-1388.
    PMID: 32356362 DOI: 10.1111/jam.14678
    AIMS: To determine the mechanism underlying the serum cholesterol reduction effect by probiotics isolated from local fermented tapioca (Tapai).

    METHODS AND RESULTS: Lactic acid bacteria strains were isolated and examined for acid tolerance, bile salt resistance and hypocholesterolemic properties. Among the isolates, Lactobacillus plantarum TAR4 showed the highest cholesterol reduction ability (48·01%). The focus in the in vivo trial was to elucidate the cholesterol balance from findings pertaining to serum cholesterol reduction in rat model fed with high fat diet via oral administration. Rats fed with high-cholesterol diet supplemented with Lact. plantarum TAR4 showed significant reduction in serum total cholesterol (29·55%), serum triglyceride (45·31%) and liver triglyceride (23·44%) as compared to high-cholesterol diet (HCD) group. There was a significant increment in faecal triglyceride (45·83%) and faecal total bile acid (384·95%) as compared to HCD group.

    CONCLUSIONS: The findings showed that probiotic Lact. plantarum TAR4 supplementation reduced the absorption of bile acids for enterohepatic recycling and increased the catabolism of cholesterol to bile acids and not by suppressing the rate of cholesterol synthesis.

    SIGNIFICANCE AND IMPACT OF STUDY: Probiotic supplements could provide a new nonpharmacological alternative to reduce cardiovascular risk factors.

    Matched MeSH terms: Lactobacillales/classification; Lactobacillales/isolation & purification; Lactobacillales/metabolism
  15. Muhialdin BJ, Algboory HL, Mohammed NK, Kadum H, Hussin ASM, Saari N, et al.
    Curr Drug Discov Technol, 2020;17(4):553-561.
    PMID: 31309892 DOI: 10.2174/1570163816666190715120038
    BACKGROUND: Despite the extensive research carried out to develop natural antifungal preservatives for food applications, there are very limited antifungal agents available to inhibit the growth of spoilage fungi in processed foods. Scope and Approach: Therefore, this review summarizes the discovery and development of antifungal peptides using lactic acid bacteria fermentation to prevent food spoilage by fungi. The focus of this review will be on the identification of antifungal peptides, potential sources, the possible modes of action and properties of peptides considered to inhibit the growth of spoilage fungi. Key Findings and Conclusions: Antifungal peptides generated by certain lactic acid bacteria strains have a high potential for applications in a broad range of foods. The mechanism of peptides antifungal activity is related to their properties such as low molecular weight, concentration and secondary structure. The antifungal peptides were proposed to be used as bio-preservatives to reduce and/or replace chemical preservatives.
    Matched MeSH terms: Lactobacillales/immunology*
  16. Mohd Taha MD, Mohd Jaini MF, Saidi NB, Abdul Rahim R, Md Shah UK, Mohd Hashim A
    PLoS One, 2019;14(12):e0224431.
    PMID: 31841519 DOI: 10.1371/journal.pone.0224431
    Dieback disease caused by Erwinia mallotivora is a major threat to papaya plantation in Malaysia. The current study was conducted to evaluate the potential of endophytic lactic acid bacteria (LAB) isolated from papaya seeds for disease suppression of papaya dieback. Two hundred and thirty isolates were screened against E. mallotivora BT-MARDI, and the inhibitory activity of the isolates against the pathogen was ranging from 11.7-23.7 mm inhibition zones. The synergistic experiments revealed that combination of W. cibaria PPKSD19 and Lactococcus lactis subsp. lactis PPSSD39 increased antibacterial activity against the pathogen. The antibacterial activity was partially due to the production of bacteriocin-like inhibitory substances (BLIS). The nursery experiment confirmed that the application of bacterial consortium W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 significantly reduced disease severity to 19% and increased biocontrol efficacy to 69% of infected papaya plants after 18 days of treatment. This study showed that W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 are potential candidate as biocontrol agents against papaya dieback disease.
    Matched MeSH terms: Lactobacillales/drug effects
  17. Muhialdin BJ, Saari N, Meor Hussin AS
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517380 DOI: 10.3390/molecules25112655
    The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
    Matched MeSH terms: Lactobacillales/metabolism
  18. Amirdivani S, Baba AS
    J Food Sci Technol, 2015 Jul;52(7):4652-60.
    PMID: 26139940 DOI: 10.1007/s13197-014-1670-6
    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p 
    Matched MeSH terms: Lactobacillales
  19. Mohamad Fakri E, Lim S, Musa N, Hazizul Hasan M, Adam A, Ramasamy K
    Sains Malaysiana, 2016;45:1289-1297.
    This study examined lactic acid bacteria (LAB)-fermented soymilk for their ability in hydrolyzing glucosides to aglycones
    and corresponding antioxidant capacity and memory enhancing effect. Twelve LAB isolated from Malaysian fermented food
    and milk products were incubated in commercially available soymilk for 48 h. Generally, soymilk supported LAB growth
    and significantly increased (p<0.05) conversion to bioactive aglycone by 2.1-6.5 fold when compared to unfermented
    soymilk. Lactobacillus fermentum LAB 9- fermented soymilk, in particular, was presented with increased total phenolic
    content (+10%) as opposed to unfermented soymilk. Lactobacilli (LAB 10-12)- and pediococci (LAB 5)-fermented soymilk
    elicited maximal DPPH radical-scavenging activity. LAB 1, 7, 8, 9 and 12 exhibited significantly higher (p<0.05) ferrous
    ion chelating activity when compared to control. Interestingly, LAB 9 had significantly improved memory deficit (p<0.05)
    in LPS-challenged mice. LAB-enriched nutritional value of soymilk could be useful against oxidative stress and memory
    Matched MeSH terms: Lactobacillales
  20. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
    Matched MeSH terms: Lactobacillales
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links