Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Johari IS, Harun N, Sofian ZM, Shoaib M
    Psychopharmacology (Berl), 2021 Nov;238(11):3183-3191.
    PMID: 34333672 DOI: 10.1007/s00213-021-05934-4
    RATIONALE: Kratom (Mitragyna speciosa Korth), a native medicinal plant of Southeast Asia, is proposed to exhibit potential therapeutic value as an opioid substitute. However, studies of its negative emotional states resulting from withdrawal particularly of its main psychoactive compound, mitragynine (MG), are limited.

    OBJECTIVES: Using the pentylenetetrazol (PTZ) discrimination assay, this study aims to investigate the effects of MG in responding to the PTZ stimulus and to assess the generalisation effects of withdrawal from MG to the PTZ stimulus.

    METHODS: Rats (n = 20) were trained on a tandem (FR-10, VI-15) schedule of food reinforcement to press one lever after administration of the anxiogenic compound PTZ (16 mg/kg, i.p.) and an alternate lever after vehicle. Following acute tests, training was suspended, and rats were chronically treated with MG or morphine at 8-h intervals for 9 days and withdrawal was precipitated on the tenth day using naloxone (1 mg/kg, i.p.). The rats were tested for generalisation to PTZ at 2, 8 and 24 h after the last dose of MG or morphine administration.

    RESULTS: Unlike morphine that produced dose-related PTZ-like stimulus, MG at 3, 10, 30 and 45 mg/kg doses showed no substitution to the PTZ discriminative stimulus. In contrast to morphine which produced a time-dependent generalisation to the PTZ stimulus, naloxone did not precipitate withdrawal effects in MG-treated rats as they selected the vehicle lever at three withdrawal time points.

    CONCLUSION: These results demonstrate that MG produces a very different response to morphine withdrawal that is not associated with anxiogenic-like subjective symptoms. These characteristics of MG may provide further support for use as a novel pharmacotherapeutic intervention for managing opioid use disorder.

    Matched MeSH terms: Naloxone/pharmacology
  2. Schottenfeld RS, Chawarski MC, Mazlan M
    Addiction, 2021 08;116(8):2135-2149.
    PMID: 33404150 DOI: 10.1111/add.15399
    BACKGROUND AND AIM: To address the widespread severe problems with opioid use disorder, buprenorphine-naloxone treatment provided by primary care physicians has greatly expanded treatment access; however, treatment is often provided with minimal or no behavioral interventions. Whether or which behavioral interventions are feasible to implement in various settings and improve treatment outcomes has not been established. This study aimed to evaluate two behavioral interventions to improve buprenorphine-naloxone treatment.

    DESIGN: A 2 × 2 factorial, repeated-measures, open-label, randomized clinical trial.

    SETTINGS: General medical practice offices in Muar, Malaysia.

    PARTICIPANTS: Opioid-dependent individuals (n = 234).

    INTERVENTIONS: Participants were randomly assigned to one of four treatment conditions and received study interventions for 24 weeks: (1) physician management with or without behavioral counseling and (2) physician management with or without abstinence-contingent buprenorphine-naloxone (ACB) take-home doses.

    MEASUREMENTS: The primary outcomes were proportions of opioid-negative urine tests and HIV risk behaviors [assessed by audio computer-assisted AIDS risk inventory (ACASI-ARI)].

    FINDINGS: The rates of opioid-negative urine tests over 24 weeks of treatment were significantly higher with [68.2%, 95% confidence interval (CI) = 65-71] than without behavioral counseling (59.2%, 95% CI = 56-62, P 

    Matched MeSH terms: Naloxone/therapeutic use
  3. Nordin M, Morat P, Zainora M
    Clin Exp Pharmacol Physiol, 1987 Apr;14(4):303-8.
    PMID: 3665195
    1. A series of experiments were conducted to investigate the effect of endogenous opioids on blood pressure of laboratory rats during stress. 2. Rats subjected to 120 min immobilization showed a significant drop in systolic pressure which could be prevented by pretreatment injections of naloxone. 3. Adrenalectomized rats subjected to the same kind of stress showed a drop in systolic pressure equivalent to only 30% of the systolic pressure drop in the intact animals. This decrease in systolic pressure could also be prevented by pretreatment injections of naloxone. 4. It was concluded that the decrease in systolic pressure in intact rats during immobilization was mostly due to endogenous opioids released from the adrenal glands, whereas opioids of other origins such as the pituitary gland, were also important.
    Matched MeSH terms: Naloxone/pharmacology
  4. Ruszymah BH, Nabishah BM, Aminuddin S, Khalid BA
    Clin Exp Pharmacol Physiol, 1995 Jan;22(1):35-9.
    PMID: 7768032
    1. The aim of this study was to investigate the effect of repeated exposure to stress on tail blood pressure (TBP) of normal as well as GCA (glycyrrhizic acid) and steroid treated rats. Male Sprague-Dawley rats (250 g) were exposed to ether vapour to achieve light anaesthesia prior to TBP recording. Rats were injected with either normal saline or naloxone prior to exposure to stress. Tail blood pressure was recorded daily for 2 weeks. 2. We found that ether stress caused a transient drop in TBP in control as well as in dexamethasone (DEX) treated rats. The stress-induced fall in blood pressure was reduced by naloxone in control rats but not in DEX treated rats. However the transient drop in TBP following stress was not seen in either GCA or deoxycorticosterone (DOC) treated rats. 3. We conclude that first, the reduction in TBP was due to the release of endogenous opioids caused by stress. Second, DOC may block the release of such endogenous opioids, preventing the drop in TBP in response to stress, while DEX did not. Third, GCA caused a similar mineralocorticoid effect on reversing stress induced hypotension.
    Matched MeSH terms: Naloxone/pharmacology
  5. George P, Ramasamy P, Thurairajasingam S, Shah Z
    Med J Malaysia, 2015 Aug;70(4):251-5.
    PMID: 26358024 MyJurnal
    INTRODUCTION: Opioid dependence is recorded as the most common drug of abuse in Malaysia. Currently, the preferred substitution therapy for most Government treatment centres is methadone used as substitution therapy for opioid dependence. There are, however patients who may benefit from being on the combined buprenorphine-naloxone formulation as substitution therapy instead. We discuss six cases of opioid dependence of varied backgrounds that were treated with buprenorphinenaloxone therapy and their outcomes.

    DISCUSSION: All of the reported patients improved after the induction of buprenorphine- naloxone. Two of the cases highlighted the transfer of patients on methadone to buprenorphine-naloxone due to the adverse effect and interactions of methadone with other medications. During the transfer there were no major adverse reactions noted, and patients were safely able to continue with the maintenance therapy of buprenorphine- naloxone.

    CONCLUSION: Buprenorphine-naloxone is a safe and effective drug substitution therapy for opioid dependence. It has fewer interactions with other medications, and has similar efficacy to methadone. Being a partial agonist, it has a less sedating effect making patients more functional.
    Matched MeSH terms: Buprenorphine, Naloxone Drug Combination
  6. Sambasevam Y, Omar Farouk AA, Tengku Mohamad TA, Sulaiman MR, Bharatham BH, Perimal EK
    Eur J Pharmacol, 2017 Feb 05;796:32-38.
    PMID: 27988285 DOI: 10.1016/j.ejphar.2016.12.020
    Neuropathic pain arises from the injury of nervous system. The condition is extremely difficult to be treated due to the ineffectiveness and presence of various adverse effects of the currently available drugs. In the present study, we investigated the antiallodynic and antihyperlagesic properties of cardamonin, a naturally occurring chalcone in chronic constriction injury (CCI)-induced neuropathic pain mice model. Our findings showed that single and repeated dose of intra-peritoneal administration of cardamonin (3, 10, 30mg/kg) significantly inhibited (P<0.001) the chronic constriction injury-induced neuropathic pain using the Hargreaves plantar test, Randall-Selitto analgesiometer test, dynamic plantar anesthesiometer test and the cold plate test in comparison with the positive control drug used (amitriptyline hydrochloride, 20mg/kg, i.p.). Pre-treatment with naloxone hydrochloride (1mg/kg, i.p.) and naloxone methiodide (1mg/kg, s.c) significantly reversed the antiallodynic and antihyperalgesic effects of cardamonin in dynamic plantar anesthesiometer test and Hargreaves plantar test, respectively. In conclusion, the current findings demonstrated novel antiallodynic and antihyperalgesic effects of cardamonin through the activation of the opioidergic system both peripherally and centrally and may prove to be a potent lead compound for the development of neuropathic pain drugs in the future.
    Matched MeSH terms: Naloxone
  7. Khalid S, Shaik Mossadeq WM, Israf DA, Hashim P, Rejab S, Shaberi AM, et al.
    Med Princ Pract, 2010;19(4):255-9.
    PMID: 20516700 DOI: 10.1159/000312710
    To study the effects of Tamarindus indica L. aqueous fruit extract on the antinociceptive activities in rodent models.
    Matched MeSH terms: Naloxone/pharmacology
  8. Ainsah O, Nabishah BM, Osman CB, Khalid BA
    PMID: 10595599
    Normal rats, on being repetitively stressed by being restrained in a tight container for two hours, had higher levels of plasma corticosterone compared to pre stress values. These rats also reacted to the stress by a behavioral response in which there was marked decrease in locomotor activity assessed by the open field test (pre stress: 71.3 +/- 2.6 squares crossed versus post stress: 14.3 +/- 2.5 squares crossed) by counting the number of squares entered by the rat over 5 minutes. By the 6th to 7th exposures to the repetitive stress, the rats adapted to the stress and had normal plasma corticosterone levels and locomotor activity scores comparable to the pre stress values. These responses to stress were completely blocked by the administration of 0.32 microg/100 g BW of naloxone i.p at 10 minutes prior to the stress. In rats fed with rat chow supplemented with 90 mg/kg rat chow or 150 mg/kg rat chow of vitamin E, there was significant reduction of the plasma corticosterone levels and improvement in the locomotor activity. Stress thus caused opioid mediated increase in plasma corticosterone and reduction in locomotor activity which could be blocked by naloxone. These stress responses probably also involved generation of oxygen free radicals which were scavenged by the vitamin E, thus reducing the effects of repetitive stress on locomotor activity and serum corticosterone levels.
    Matched MeSH terms: Naloxone/pharmacology*
  9. Yusof SR, Abbott NJ, Avdeef A
    Eur J Pharm Sci, 2017 Aug 30;106:274-286.
    PMID: 28614733 DOI: 10.1016/j.ejps.2017.06.016
    Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, Papp, and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, Fpf, than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P0=398×10-6cm·s-1. The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of Fpf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (pH-MME) analysis of the data indicated a smooth sigmoidal transition from a higher capacity uptake process affecting cationic naloxone (pH5.0-7.0) to a lower capacity uptake process affecting the neutral drug (pH8.0-8.5), with cross-over point near pH7.4. Evidently, measurements at multiple pH values can reveal important information about both cerebrovascular flow and BBB transport kinetics.
    Matched MeSH terms: Naloxone/pharmacokinetics*
  10. Shamima AR, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulselvan P
    Int J Mol Sci, 2012;13(9):11427-42.
    PMID: 23109863 DOI: 10.3390/ijms130911427
    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.
    Matched MeSH terms: Naloxone/analogs & derivatives; Naloxone/pharmacology
  11. Ainsah O, Nabishah BM, Osman CB, Khalid BA
    Clin Exp Pharmacol Physiol, 1999 7 1;26(5-6):433-7.
    PMID: 10386234
    1. The present study examined the effect of naloxone (NAL), glycyrrhizic acid (GCA), deoxycorticosterone (DOC) and dexamethasone (DEX) on daily repeated 2 h chronic restrained stress (RS) on the locomotor activity (LA) of rats tested in the open field arena to elucidate the possible roles of opioids, glucocorticoids and mineralocorticoids in response to stress. 2. Intact and adrenalectomized (ADX) rats were either injected with 0.1 mL of NAL (0.32 microgram/100 g BW), 2.4 mg/kg DOC or 120 micrograms/kg DEX or had 1.0 mg/mL GCA dissolved in their drinking water or normal saline (for the ADX group) dissolved in their drinking water. 3. In intact groups, treatment with NAL completely blocked the stress response and treatment with GCA, DOC and DEX partially prevented the stress response. Adaptation occurred on either days 4, 5, 6 or 7 for intact rats treated with DEX, DOC, GCA or control rats, respectively. All ADX control rats died following the first 2 h RS. Adrenalectomized rats treated with DEX or DOC adapted later compared with intact rats, while rats given either GCA or NAL were unable to block or adapt to chronic RS. 4. These findings demonstrate that the stress response is primarily mediated by endogenous opioids, in that it is blocked by NAL. Both mineralocorticoids and glucocorticoids, which can act centrally to inhibit endorphins, partially blocked the stress response. The effect of GCA in intact rats was similar to that of both DEX and DOC in intact rats. Adrenalectomized rats treated with GCA (despite their lack of endogenous corticosterone) showed a stress response that was significantly different from the other ADX groups, implying that GCA had effects independent of endogenous corticosterone.
    Matched MeSH terms: Naloxone/pharmacology*; Naloxone/therapeutic use
  12. Bruce RD, Govindasamy S, Sylla L, Kamarulzaman A, Altice FL
    Am J Drug Alcohol Abuse, 2009;35(2):68-72.
    PMID: 19212931 DOI: 10.1080/00952990802585406
    Diversion of buprenorphine (BPN) has been described in settings where it is legally prescribed and has resulted in increasing concern. To address this concern, co-formulation of buprenorphine/naloxone (BPN/NLX) replaced buprenorphine alone in Malaysia in December 2006.
    Matched MeSH terms: Buprenorphine, Naloxone Drug Combination; Naloxone/administration & dosage; Naloxone/adverse effects*
  13. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

    Matched MeSH terms: Naloxone
  14. Sambasevam, Yogesvari, Wong, Siong Jiun, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Mohd Roslan Sulaiman, Mohd Khairi Hussain, et al.
    MyJurnal
    Introduction: Active compounds derived from plants are able to inhibit nerve conduction. Cardamonin, a naturally occurring chalcone, manifests anti-nociceptive, anti-inflammatory and anti-neuropathy properties. Consequently, cardamonin may potentially inhibit nerve action potential, whereby, it affects the nerve conduction. Compound action potential is the sum of the activity which is measured from a nerve trunk. Objective: The experiment was carried out to investigate the inhibitory effect of cardamonin on compound action potentials and its possible mechanism of action on frog sciatic nerve. Methodology: LabTutor software was used to record compound action potentials in frog sciatic nerve. Sciatic nerve was isolated from the frog and soaked in Ringer’s solution. Stimulating electrodes were used to stimulate the nerve and recording electrodes were used to record compound action potentials. Compound action potential of the nerve were recorded before and after treatments [vehicle, cardamonin (0.5, 1 & 2 mg/ml) & morphine (3mg/ml)]. Participation of opioid system was investigated by pre-treating the nerve with naloxone and followed by cardamonin. All the data were recorded and analysed via LabTutor software. The data were analysed by using Two-way ANOVA followed by Bonferonni’s post hoc test with significant value at P < 0.05. Results: The outcomes showed that all the doses of cardamonin significantly reduced the peak amplitude of compound action potential in frog sciatic nerves. Besides, co-treatment of naloxone and cardamonin significantly (P < 0.001) reversed the effect of cardamonin on peak amplitude of compound action potential, suggesting the involvement of opioid receptors to inhibit nerve conduction. Conclusion: Cardamonin reduces the nerve signal conduction via activation of opioid receptors to modulate pain and contribute to the analgesic effects.
    Matched MeSH terms: Naloxone
  15. Gopalsamy, Banulata, Chia, Jasmine Siew Min, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Wong, Siong Jun, Ahmad Akira Omar Farouk, et al.
    MyJurnal
    Boesenbergia rotunda, traditionally used to relieve stomach, abdomen, joint, muscle, and rheumatic pain was also reported for its antinociceptive effect on a mouse model. However, the possible pain relief effect of Boesenbergia rotunda ethanolic extract (BREE) via the inhibition to the neural pain pathway remains to be elucidated. This study investigated the inhibitory effect of BREE on compound action potentials (CAPs) and the possible involvement of the opioid receptors. The changes in the CAPs amplitudes of the frog’s sciatic nerves were evaluated following the exposure to three different dosages of BREE (1, 3 and 10 mg/ml and morphine (3 mg/ml). In another set of experiment, the nerves were pretreated with a non-selective opioid receptor antagonist, naloxone (0.1 mg/ml), before exposing the nerve to BREE (1 mg/ml) to investigate the involvement of opioid receptors in the CAPs inhibitory mechanism. The outcome showed a reduction in the CAPs amplitudes when treated with BREE (1, 3 and 10 mg/ml) whereby the effect was reversible. The CAPs inhibition by BREE was absent when the opioid receptors were blocked. Taken together, these findings suggest that BREE-induced CAPs amplitude reduction involves the activation of opioid receptors.
    Matched MeSH terms: Naloxone
  16. Lim, Dwee Shion, Sambamoorthy, Vijayrama Rao, Ling, Diana Soon Ying, Sharifah Sulaiha Syed Aznal
    ASEAN Journal of Psychiatry, 2014;15(2):131-139.
    MyJurnal
    Objective: This study was conducted to assess the effects of Methadone Maintenance Therapy (MMT) and buprenorphine-naloxone Maintenance Therapy (BNX) on the Quality of life (QoL) of opiate abusers. Methods: The QoL status of opioid-dependent patients was assessed using the WHOQOL-BREF questionnaire. It is a cross-sectional study involving a total of 108 patients who received MMT or BNX therapy in Malaysia from May 2011 to September 2011. Results: A statistically significant difference in the overall QoL and psychological aspect among patients on MMT was observed. On the contrary, the scores of overall QoL and quality of social relationship for BNX group were higher in patients with lower dosage. Conclusion: The comparison between patients on high dose MMT and high dose BNX exhibited significant difference in the overall QoL especially in psychological, social relationship and environment domains, with the high dose MMT group having better mean score. ASEAN Journal of Psychiatry, Vol. 15 (2): July - December 2014: 131-139.
    Matched MeSH terms: Buprenorphine, Naloxone Drug Combination
  17. Shajib MS, Rashid RB, Ming LC, Islam S, Sarker MMR, Nahar L, et al.
    Front Pharmacol, 2018;9:85.
    PMID: 29515437 DOI: 10.3389/fphar.2018.00085
    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties.Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone (1), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) (2), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4), isolated and identified fromN. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds1,3, and4(12.5-25 mg/kg b.w.) exhibited dose-dependent and significant (p< 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K+channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound1,3, and4(12.5 mg/kg b.w.) demonstrated significant (p< 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAAreceptor in the action of compound3and4was evident from the reversal effects of flumazenil. In addition, compounds1and4(12.5-25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1-4) fromN. Plumbaginifoliacould be considered as suitable candidates for the development of analgesic and anxiolytic agents.
    Matched MeSH terms: Naloxone
  18. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
    Matched MeSH terms: Naloxone
  19. Sani MH, Zakaria ZA, Balan T, Teh LK, Salleh MZ
    PMID: 22611437 DOI: 10.1155/2012/890361
    Muntingia calabura L. (family Elaeocarpaceae) has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC) and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test) and thermal (hot plate test) models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg) was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P < 0.05) antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO) donor), N(G)-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS)), methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP) pathway), or their combination also caused significant (P < 0.05) change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.
    Matched MeSH terms: Naloxone
  20. Ong HM, Mohamad AS, Makhtar N', Khalid MH, Khalid S, Perimal EK, et al.
    J Ethnopharmacol, 2011 Jan 7;133(1):227-33.
    PMID: 20920570 DOI: 10.1016/j.jep.2010.09.030
    Acmella uliginosa (Sw.) Cass. is a medicinal herbaceous plant that is commonly used by the Malay community in Malaysia to relieve pain often associated with mouth ulcers, toothache, sore throat, and stomach ache.
    Matched MeSH terms: Naloxone/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links