METHODS: BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison.
RESULTS: BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P
MATERIALS AND METHODS: In the present study, the anticancer effects and the mechanisms of action of 17βH-neriifolin (cardiac glycoside) were evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and a proteomic approach in treated and non-treated SKOV-3 ovarian cancer cells.
RESULTS: 17βH-neriifolin was found to be active with IC50 values of 0.01 ± 0.001 in SKOV-3 ovarian cancer cell line, as evaluated by the sulforhodamine B (SRB) assay. RESULTS from TUNEL assay indicated that 17βH-neriifolin caused apoptosis in SKOV-3 cells in a dose-dependent manner. Based on differential analysis of treated and non-treated SKOV-3 two-dimensional electrophoresis (2-DE) profiles, four proteins, namely vimentin (VIM), pyruvate kinase, muscle (PKM), heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and transgelin (TAGLN1) were identified to be involved in apoptosis. Other proteins including piggybac transposable element derived 5 (PGBD5), DENN/MADD domain containing 2D (DENND2D) and formin-like 1(FMNL) have also been identified to be associated in SKOV-3 cell death induced by 17βH-neriifolin.
CONCLUSION: These findings may provide new insights on the potential of 17βH-neriifolin's mechanism of action in killing ovarian cancer cells.