DESIGN: Recommendations from a working group of international experts in macular degeneration outcomes registry development and patient advocates, facilitated by the International Consortium for Health Outcomes Measurement (ICHOM).
METHODS: Modified Delphi technique, supported by structured teleconferences, followed by online surveys to drive consensus decisions. Potential outcomes were identified through literature review of outcomes collected in existing registries and reported in major clinical trials. Outcomes were refined by the working group and selected based on impact on patients, relationship to good clinical care, and feasibility of measurement in routine clinical practice.
RESULTS: Standardized measurement of the following outcomes is recommended: visual functioning and quality of life (distance visual acuity, mobility and independence, emotional well-being, reading and accessing information); number of treatments; complications of treatment; and disease control. Proposed data collection sources include administrative data, clinical data during routine clinical visits, and patient-reported sources annually. Recording the following clinical characteristics is recommended to enable risk adjustment: age; sex; ethnicity; smoking status; baseline visual acuity in both eyes; type of macular degeneration; presence of geographic atrophy, subretinal fibrosis, or pigment epithelial detachment; previous macular degeneration treatment; ocular comorbidities.
CONCLUSIONS: The recommended minimum outcomes and pragmatic reporting standards should enable standardized, meaningful assessments and comparisons of macular degeneration treatment outcomes. Adoption could accelerate global improvements in standardized data gathering and reporting of patient-centered outcomes. This can facilitate informed decisions by patients and health care providers, plus allow long-term monitoring of aggregate data, ultimately improving understanding of disease progression and treatment responses.
FINDINGS: The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The adsorption equilibrium constant (K) and standard free energy of adsorption (ΔGads) were calculated. Quantum chemical parameters such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in both the EHOMO and μ values but with a decrease in the ELUMO value.
CONCLUSIONS: Our research show that the synthesized macromolecule represents an excellent inhibitor for materials in acidic solutions. The efficiency of this macromolecule had maximum inhibition efficiency up to 96 % at 0.5 mM and diminishes with a higher temperature degree, which is revealing of chemical adsorption. An inhibitor molecule were absorbed by metal surface and follow Langmuir isotherms low and establishes an efficient macromolecule inhibitor having excellent inhibitive properties due to entity of S (sulfur) atom, N (nitrogen) atom and O (oxygen) atom.