OBJECTIVE: To update the 2023 research index for adults with LC using additional participant data from the Researching COVID to Enhance Recovery (RECOVER-Adult) study and an expanded symptom list based on input from patient communities.
DESIGN, SETTING, AND PARTICIPANTS: Prospective, observational cohort study including adults 18 years or older with or without known prior SARS-CoV-2 infection who were enrolled at 83 sites in the US and Puerto Rico. Included participants had at least 1 study visit taking place 4.5 months after first SARS-CoV-2 infection or later, and not within 30 days of a reinfection. The study visits took place between October 2021 and March 2024.
EXPOSURE: SARS-CoV-2 infection.
MAIN OUTCOMES AND MEASURES: Presence of LC and participant-reported symptoms.
RESULTS: A total of 13 647 participants (11 743 with known SARS-CoV-2 infection and 1904 without known prior SARS-CoV-2 infection; median age, 45 years [IQR, 34-69 years]; and 73% were female) were included. Using the least absolute shrinkage and selection operator analysis regression approach from the 2023 model, symptoms contributing to the updated 2024 index included postexertional malaise, fatigue, brain fog, dizziness, palpitations, change in smell or taste, thirst, chronic cough, chest pain, shortness of breath, and sleep apnea. For the 2024 LC research index, the optimal threshold to identify participants with highly symptomatic LC was a score of 11 or greater. The 2024 index classified 20% of participants with known prior SARS-CoV-2 infection and 4% of those without known prior SARS-CoV-2 infection as having likely LC (vs 21% and 5%, respectively, using the 2023 index) and 39% of participants with known prior SARS-CoV-2 infection as having possible LC, which is a new category for the 2024 model. Cluster analysis identified 5 LC subtypes that tracked quality-of-life measures.
CONCLUSIONS AND RELEVANCE: The 2024 LC research index for adults builds on the 2023 index with additional data and symptoms to help researchers classify symptomatic LC and its symptom subtypes. Continued future refinement of the index will be needed as the understanding of LC evolves.
METHODS: Sixty NAFLD patients (32 males, 28 females; age: 49.7±8.7 years; BMI: 31.1±3.3 kg/m2) were randomized into HIIT, aerobic training, and control cohorts. The HIIT cohort performed 4-minute high-intensity intervals at 85-95% of peak heart rate, interspersed with 3-minute active recovery at 60-70% of peak heart rate for 30-40 minutes per session. The aerobic training cohort performed continuous exercise at 60-70% of peak heart rate for 45-60 minutes per session. Both intervention cohorts underwent 12 weeks of supervised training, thrice weekly. Before and after the intervention, assessments included cardiorespiratory fitness, muscular strength, flexibility, lipid profile, liver enzymes, inflammatory markers, insulin sensitivity, and oxidative stress markers.
RESULTS: Compared to controls, both exercise cohorts showed significant improvements in cardiorespiratory fitness, muscular strength, and flexibility. However, HIIT elicited superior enhancements in cardiorespiratory fitness and muscular strength. Biochemically, both exercise cohorts exhibited reductions in triglycerides, low-density lipoprotein (LDL) cholesterol, liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST]), inflammatory markers (C-reactive protein [CRP], interleukin-6 [IL-6]), insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR]), and oxidative stress markers (malondialdehyde [MDA], protein carbonyl). Notably, HIIT yielded more substantial improvements in these parameters.
CONCLUSIONS: HIIT and traditional aerobic training are effective in improving physical fitness and ameliorating biochemical indicators in NAFLD patients. Notably, HIIT appears to be more advantageous in enhancing cardiorespiratory fitness, muscular strength, and metabolic, inflammatory, and oxidative stress profiles, suggesting its potential as a time-efficient and effective exercise modality for managing NAFLD.
METHOD: Prospective cohort study of all parents of children with bilateral non-ambulant CP who owned Android devices. NeuroPAIN app was installed in all participants. At 3-month follow-up, data of the NeuroPAIN app was analyzed and participants were given a feedback questionnaire to complete.
RESULTS: Total of 60 parents participated in the study (child's median age 7 years, interquartile range 4-8.75 years). The vast majority (95 %) of parents reported pain in their children. Children with assisted tube feeding was associated with reported increased pain frequency. Majority (77 %) felt it was easy to navigate the NeuroPAIN app. Two-thirds regularly tracked their child's pain using the app over a 2-month period. Parents of children with prolonged periods of pain ≥25 s were associated with reduced app usage.
CONCLUSION: Majority of Malaysian children with bilateral CP often experience pain particularly among those with assisted tube feeding highlighting the importance for clinicians to be vigilant in monitoring pain among these children. Prolonged pain periods among children with CP may lead to parental fatigue in monitoring pain through the NeuoPAIN app.