Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, et al.
    Vasc Health Risk Manag, 2021;17:739-769.
    PMID: 34858028 DOI: 10.2147/VHRM.S328096
    Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
  2. Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3302-3322.
    PMID: 34755300 DOI: 10.1007/s11356-021-17346-0
    Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
  3. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al.
    PMID: 34548817 DOI: 10.2147/BCTT.S316667
    Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
  4. Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, et al.
    Saudi J Biol Sci, 2021 Dec;28(12):6730-6747.
    PMID: 34866972 DOI: 10.1016/j.sjbs.2021.07.046
    Breast cancer (BC) has high incidence and mortality rates, making it a major global health issue. BC treatment has been challenging due to the presence of drug resistance and the limited availability of therapeutic options for triple-negative and metastatic BC, thereby urging the exploration of more effective anti-cancer agents. Hesperidin and its aglycone hesperetin, two flavonoids from citrus species, have been extensively evaluated for their anti-cancer potentials. In this review, available literatures on the chemotherapeutic and chemosensitising activities of hesperidin and hesperetin in preclinical BC models are reported. The safety and bioavailability of hesperidin and hesperetin as well as the strategies to enhance their bioavailability are also discussed. Overall, hesperidin and hesperetin can inhibit cell proliferation, migration and BC stem cells as well as induce apoptosis and cell cycle arrest in vitro. They can also inhibit tumour growth, metastasis and neoplastic changes in tissue architecture in vivo. Moreover, the co-administration of hesperidin or hesperetin with doxorubicin, letrozole or tamoxifen can enhance the efficacies of these clinically available agents. These chemotherapeutic and chemosensitising activities of hesperidin and hesperetin have been linked to several mechanisms, including the modulation of signalling pathways, glucose uptake, enzymes, miRNA expression, oxidative status, cell cycle regulatory proteins, tumour suppressor p53, plasma and liver lipid profiles as well as DNA repair mechanisms. However, poor water solubility, extensive phase II metabolism and apical efflux have posed limitations to the bioavailability of hesperidin and hesperetin. Various strategies for bioavailability enhancement have been studied, including the utilisation of nano-based drug delivery systems and the co-administration of hesperetin with other flavonoids. In particular, nanoformulated hesperidin and hesperetin possess greater chemotherapeutic and chemosensitising activities than free compounds. Despite promising preclinical results, further safety and efficacy evaluation of hesperidin and hesperetin as well as their nanoformulations in clinical trials is required to ascertain their potentials to be developed as clinically useful agents for BC treatment.
  5. Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, et al.
    Int J Nanomedicine, 2021;16:7891-7941.
    PMID: 34880614 DOI: 10.2147/IJN.S328135
    Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
  6. Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, et al.
    Drug Des Devel Ther, 2021;15:4527-4549.
    PMID: 34764636 DOI: 10.2147/DDDT.S338548
    Anthraquinones (AQs) are found in a variety of consumer products, including foods, nutritional supplements, drugs, and traditional medicines, and have a wide range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 1981 and has been reported for many biological activities. However, no review has been reported so far to create awareness about this molecule and its role in future drug discovery. Therefore, the present review aimed to provide comprehensive evidence of Rubiadin's phytochemistry, biosynthesis, physicochemical properties, biological properties and therapeutic potential. Relevant literature was gathered from numerous scientific databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as its method of isolation, synthesis, characterisation, physiochemical properties and possible biosynthesis pathways, was extensively covered in this review. Following a rigorous screening and tabulating, a thorough description of Rubiadin's biological properties was gathered, which were based on scientific evidences. Rubiadin fits all five of Lipinski's rule for drug-likeness properties. Then, the in depth physiochemical characteristics of Rubiadin were investigated. The simple technique for Rubiadin's isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, antifungal, and antiviral properties. The mechanism of action for the majority of the pharmacological actions reported, however, is unknown. In addition to this review, an in silico molecular docking study was performed against proteins with PDB IDs: 3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. The toxicity profile, pharmacokinetics and possible structural modifications were also described. Rubiadin was also proven to have the highest binding affinity to the targeted proteins in an in silico study; thus, we believe it may be a potential anticancer molecule. In order to present Rubiadin as a novel candidate for future therapeutic development, advanced studies on preclinical, clinical trials, bioavailability, permeability and administration of safe doses are necessary.
  7. Velu V, Banerjee S, Radhakrishnan V, Gupta G, Chellappan DK, Fuloria NK, et al.
    PMID: 33573582 DOI: 10.2174/1871523020666210126144506
    AIMS: The present investigation was aimed at exploring the phytoconstituents using Gas Chromatography Mass Spectroscopy and to evaluate antioxidant and anti-inflammatory properties of the leaf extracts.

    MATERIALS AND METHODS: The extracts were obtained sequentially with petroleum ether, ethyl acetate and water using Soxhlet apparatus. The anti-inflammatory property of the identified compounds using GC- MS spectroscopy was evaluated in silico. The antioxidant activity was performed by DPPH and H2O2 method whereas anti-inflammatory study was carried out by HRBC membrane stabilization method. Terpenoids were found to be a major constituents in petroleum ether extract while, phenols and flavonoids were predominantly found in ethyl acetate extract.

    RESULTS AND DISCUSSION: The GC-MS analysis of the extract revealed six major molecules including Squalene, 19β, 28-epoxyleanan-3-ol and 2-tu-Butyl-5-chloromethyl-3-methyl-4-oxoimidazolidine- 1-carboxylic acid. The ethyl acetate extract showed a significant antioxidant activity (P<0.01) in both DPPH method (70.87%) and H2O2 method (73.58%) at 200 μg mL-1. Increased membrane stabilization of petroleum ether extract was observed in the in vitro anti-inflammatory activity study. A strong relationship between the terpenoid content and anti-inflammatory activity was obtained from the correlation (0.971) and docking study.

    CONCLUSION: These results justify T. involucrata to be a rich source of terpenoids with potent anti- inflammatory property.

  8. Varshney P, Sharma V, Yadav D, Kumar Y, Singh A, Kagithala NR, et al.
    Curr Drug Metab, 2023;24(12):787-802.
    PMID: 38141188 DOI: 10.2174/0113892002266408231207150547
    BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism.

    OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge.

    METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined.

    RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy.

    CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.

  9. Ugrappa S, Jain A, Fuloria NK, Fuloria S
    Ann Afr Med, 2017 Apr-Jun;16(2):85-89.
    PMID: 28469123 DOI: 10.4103/aam.aam_51_16
    Ameloblastoma is the most known of the epithelial odontogenic benign tumor. It is slow growing and locally aggressive in nature and most commonly seen in the posterior mandible. Various histopathological variants exist, among which acanthomatous type of ameloblastoma is one of the rarest types. Acanthomatous ameloblastoma is usually seen in older aged human population and most commonly reported in canine region of dogs in literature. Here, we report a rare case of acanthomatous ameloblastoma in a young male patient involving mandibular anterior region crossing the midline with recurrence over a period of 2 years of follow-up after surgical resection.
  10. Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, et al.
    J Oncol, 2022;2022:3249766.
    PMID: 35586209 DOI: 10.1155/2022/3249766
    Cancer is one of the major causes of death worldwide. Its treatments usually fail when the tumor has become malignant and metastasized. Metastasis is a key source of cancer recurrence, which often leads to resistance towards chemotherapeutic agents. Hence, most cancer-related deaths are linked to the occurrence of chemoresistance. Although chemoresistance can emerge through a multitude of mechanisms, chemoresistance and metastasis share a similar pathway, which is an epithelial-to-mesenchymal transition (EMT). Matrix metalloproteinases (MMPs), a class of zinc and calcium-chelated enzymes, are found to be key players in driving cancer migration and metastasis through EMT induction. The aim of this review is to discuss the regulatory roles and associated molecular mechanisms of specific MMPs in regulating chemoresistance, particularly EMT initiation and resistance to apoptosis. A brief presentation on their potential diagnostic and prognostic values was also deciphered. It also aimed to describe existing MMP inhibitors and the potential of utilizing other strategies to inhibit MMPs to reduce chemoresistance, such as upstream inhibition of MMP expressions and MMP-responsive nanomaterials to deliver drugs as well as epigenetic regulations. Hence, manipulation of MMP expression can be a powerful tool to aid in treating patients with chemo-resistant cancers. However, much still needs to be done to bring the solution from bench to bedside.
  11. Surya Teja SP, Damodharan N, Tamilanban T, Subramaniyan V, Chitra V, Chinni SV, et al.
    Front Bioeng Biotechnol, 2023;11:1222693.
    PMID: 37545888 DOI: 10.3389/fbioe.2023.1222693
    The aim of this study was to investigate the influence of excipients on retaining the particle size of methotrexate (MTX) loaded chitosan nanocarriers (CsNP) during lyophilization, which relates to the ability to enlarge the particle size and target specific areas. The nanocarriers were prepared using the ionic gelation technique with tripolyphosphate as a crosslinker. Three lyophilized formulations were used: nanosuspension without Lyoprotectant (NF), with mannitol (NFM), and with sucrose (NFS). The lyophilized powder intended for injection (PI) was examined to assess changes in particle size, product integrity, and comparative biodistribution studies to evaluate targeting ability. After lyophilization, NFS was excluded from in-vivo studies due to the product melt-back phenomenon. The particle size of the NF lyophile significantly increased from 176 nm to 261 nm. In contrast, NFM restricted the nanocarrier size to 194 nm and exhibited excellent cake properties. FTIR, XRD, and SEM analysis revealed the transformation of mannitol into a stable β, δ polymorphic form. Biodistribution studies showed that the nanocarriers significantly increased MTX accumulation in tumor tissue (NF = 2.04 ± 0.27; NFM = 2.73 ± 0.19) compared to the marketed PI (1.45 ± 0.25 μg), but this effect was highly dependent on the particle size. Incorporating mannitol yielded positive results in restricting particle size and favoring successful tumor targeting. This study demonstrates the potential of chitosan nanocarriers as promising candidates for targeted tumor drug delivery and cancer treatment.
  12. Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, et al.
    Nanomaterials (Basel), 2021 Sep 29;11(10).
    PMID: 34685005 DOI: 10.3390/nano11102557
    A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
  13. Subramaniyan V, Chakravarthi S, Seng WY, Kayarohanam S, Fuloria NK, Fuloria S
    Pak J Pharm Sci, 2020 Jul;33(4):1739-1745.
    PMID: 33583811
    The outbreak of CoVID-19 infection rapidly increases worldwide. Most of the continents affecting from CoVID-19 and still widening its burden disease (Jones DS, 2020; Lai et al., 2020). Along with its fatality rates, CoVID-19 has caused physiological disturbances in the society and termed as "coronophobia". CoVID-19 with renal failure, severe pneumonia and respiratory syndrome patients have been reported to increase the severity of disease conditions (Sevim et al., 2020). Also, CoVID-19 with cancer patients increase the higher risk of infections. Currently, there is no vaccine or specific treatment against CoVID-19 and drug research centres continuously investigating the potential drug against CoVID-19 (Osama and Amer, 2020). For the past 20 years two major coronavirus epidemics have occurred in public includes SARS-CoV approximately 8000 cases and 800 deaths and MERS-CoV 2,500 cases and 800 deaths and these continuing sporadically (Cascella et al., 2020).
  14. Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al.
    Chem Biol Interact, 2022 Jan 05;351:109735.
    PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735
    Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
  15. Subramaniyan V, Chakravarthi S, Jegasothy R, Seng WY, Fuloria NK, Fuloria S, et al.
    Toxicol Rep, 2021;8:376-385.
    PMID: 33680863 DOI: 10.1016/j.toxrep.2021.02.010
    One of the global burdens of health care is an alcohol-associated liver disease (ALD) and liver-related death which is caused due to acute or chronic consumption of alcohol. Chronic consumption of alcohol damage the normal defense mechanism of the liver and likely to disturb the gut barrier system, mucosal immune cells, which leads to decreased nutrient absorption. Therapy of ALD depends upon the spectrum of liver injury that causes fatty liver, hepatitis, and cirrhosis. The foundation of therapy starts with abstinence from alcohol. Corticosteroids are used for the treatment of ALD but due to poor acceptance, continuing mortality, and identification of tumor necrosis factor-alpha as an integral component in pathogenesis, recent studies focus on pentoxifylline and, antitumor necrosis factor antibody to neutralize cytokines in the therapy of severe alcoholic hepatitis. Antioxidants also play a significant role in the treatment but till today there is no universally accepted therapy available for any stage of ALD. The treatment aspects need to restore the gut functions and require nutrient-based treatments to regulate the functions of the gut system and prevent liver injury. The vital action of saturated fatty acids greatly controls the gut barrier. Overall, this review mainly focuses on the mechanism of alcohol-induced metabolic dysfunction, contribution to liver pathogenesis, the effect of pregnancy, and targeted therapy of ALD.
  16. Subramanian A, Tamilanban T, Sekar M, Begum MY, Atiya A, Ramachawolran G, et al.
    Front Pharmacol, 2023;14:1212376.
    PMID: 37781695 DOI: 10.3389/fphar.2023.1212376
    Background: Excitotoxicity is a condition in which neurons are damaged/injured by the over-activation of glutamate receptors. Excitotoxins play a crucial part in the progression of several neurological diseases. Marsilea quadrifolia Linn (M. quadrifolia) is a very popular aquatic medicinal plant that has been utilised for a variety of therapeutic benefits since ancient times. Its chemical composition is diverse and includes phenolic compounds, tannins, saponins, flavonoids, steroids, terpenoids, alkaloids, carbohydrates and several others that possess antioxidant properties. Objective: The objective of the present study was to investigate the neuroprotective potential of M. quadrifolia against monosodium glutamate (MSG)-induced excitotoxicity in rats. Methods: A high-performance thin-layer chromatography (HPTLC) analysis of chloroform extract of M. quadrifolia (CEMQ) was conducted to identify the major constituents. Further, the in silico docking analysis was carried out on selected ligands. To confirm CEMQ's neuroprotective effects, the locomotor activity, non-spatial memory, and learning were assessed. Results and discussion: The present study confirmed that CMEQ contains quercetin and its derivatives in large. The in-silico findings indicated that quercetin has a better binding affinity (-7.9 kcal/mol) towards the protein target 5EWJ. Animals treated with MSG had 1) a greater reduction in the locomotor score and impairment in memory and learning 2) a greater increase in the blood levels of calcium and sodium and 3) neuronal disorganization, along with cerebral edema and neuronal degeneration in the brain tissues as compared to normal control animals. The changes were however, significantly improved in animals which received standard drug memantine (20 mg/kg) and CEMQ (200 and 400 mg/kg) as compared to the negative control. It is plausible that the changes seen with CEMQ may be attributed to the N-methyl-D-aspartate (NMDA) antagonistic properties. Conclusion: Overall, this study indicated that M. quadrifolia ameliorated MSG-induced neurotoxicity. Future investigations are required to explore the neuroprotective mechanism of M. quadrifolia and its active constituents, which will provide exciting insights in the therapeutic management of neurological disorders.
  17. Stephen A, Tune BXJ, Wu YS, Batumalaie K, Sekar M, Sarker MMR, et al.
    PMID: 38494932 DOI: 10.2174/0115680096290673240223043650
    Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.
  18. Singh Y, Fuloria NK, Fuloria S, Subramaniyan V, Almalki WH, Gupta G, et al.
    Drug Dev Res, 2021 Dec;82(8):1075-1078.
    PMID: 34469011 DOI: 10.1002/ddr.21874
    One of the most remarkable results in 2019 is the reduced prevalence and death of children from coronavirus infection (COVID-19). In 2019, a worldwide pandemic impacted around 0.1 billion individuals, with over 3.5 million mortality reported in the literature. There is minimal knowledge on SARS-CoV-2 infection immunological responses in kids. Studies have been focused mostly on adults and children since the course of pediatric sickness is often short. In adults, severe COVID-19 is related to an excessive inflammatory reaction. Macrophages and monocytes are well known to contribute to this systemic response, although numerous lines are indicative of the importance of neutrophils. An increased number of neutrophils and neutrophil to lymphocyte ratios are early signs of SARS-CoV-2 and a worse prognosis. In this study that it is crucial to monitor PAR2 and PAR4 expression and function (since nursing children have elevated levels) and the inhibiting the normal physiology through the use of anticoagulants may exacerbate the problem in adults. Thus, in COVID-19 infection, we propose the use of antiplatelet (thromboxane A2 inhibitors), if required rather than anticoagulants (FXa and thrombin Inhibitors).
  19. Sharma VK, Sharma PP, Mazumder B, Bhatnagar A, Subramaniyan V, Fuloria S, et al.
    J Biomater Sci Polym Ed, 2021 08;32(11):1420-1449.
    PMID: 33941041 DOI: 10.1080/09205063.2021.1925389
    Mucoadhesive microspheres have their own significant amongst the various sustained release drug delivery systems. The prolonged residence time of these delivery devices at drug absorption site results in steep concentration gradient and enhanced bioavailability. In this study, the mucilage of Isabgol husk was applied as polymeric backbone to develop gliclazide loaded microspheres by crosslinking with glutaraldehyde. The formulations were studied for surface morphology, swelling behavior, particle size, in vitro release, release kinetics, in vitro mucoadhesion and gamma scintigraphy in rabbits. The release of gliclazide from microspheres was controlled by swelling of crosslinked microspheres followed by diffusion. Gamma scintigraphic images acquired for microspheres retention in gastrointestinal track of rabbits indicated the residence of formulation upto 24 h after oral administration. Gliclazide retained its integrity in polymeric matrix of microspheres as observed by Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffractometry. The sustained release of gliclazide and prolonged retention of microspheres in gastrointestinal track disclosed the rationality of mucoadhesive Isabgol husk microspheres in controlling the hyperglycemia in diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links