Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Lim SS, Yu CW, Aw LD
    J Obstet Gynaecol Res, 2015 Feb;41(2):238-47.
    PMID: 25256125 DOI: 10.1111/jog.12523
    The prevalence of hemorrhoids among pregnant women is high in late pregnancy. This study was to evaluate the efficacy between drug treatment with Procort (topical hydrocortisone cream 1%) and mechanical treatment with a Hai's Perianal Support (HPS) toilet seat device in managing symptomatic hemorrhoids during the third trimester of pregnancy.
  2. Khambalia AZ, Lim SS, Gill T, Bulgiba AM
    Food Nutr Bull, 2012 Mar;33(1):31-42.
    PMID: 22624296
    For many developing countries undergoing rapid economic growth and urbanization, trends in nutritional status indicate a decrease in malnutrition with an associated rise in the prevalence of obesity. An understanding of the situation among children in Malaysia is lacking.
  3. Vijay AP, Lim SS, Tan ATB, Rokiah P, Chan SP
    JUMMEC, 2009;12(2):92-95.
    MyJurnal
    Antithyroid drugs have been used for more than 50 years for the management of hyperthyroidism. Most patients tolerate treatment well, but some may develop rare life threatening side effects such as agranulocytosis and aplastic anaemia. Clinical experience with the latter condition is extremely limited. We report on a case of carbimazole-induced aplastic anaemia caused by hypocellular bone marrow and associated plasmacytosis in a thyrotoxic patient chronically treated with carbimazole. This resolved after substitution with propylthiouracil. The clinical course was complicated by neutropaenic septicaemia and atrial fibrillation.
    Study site: University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
  4. Adam N, Lim SS, Ananda V, Chan SP
    Singapore Med J, 2010 Jul;51(7):e129-32.
    PMID: 20730389
    Vasoactive intestinal peptide-producing tumour (VIPoma) or Verner-Morrison syndrome is a very rare neuroendocrine tumour. It occurs in less than ten percent of all pancreatic islet cell tumours, and about 70 percent to 80 percent of these tumours originate from the pancreas. Diagnosis is characteristically delayed. The first-line treatment is surgical. It may be curative in forty percent of patients with benign and non-metastatic disease. Palliative surgery is indicated in extensive disease, followed by conventional somatostatin analogue (octreotide) therapy. Somatostatin analogues improve hormone-mediated symptoms, reduce tumour bulk and prevent local and systemic effects. We present a female patient with VIPoma syndrome, which had metastasised to the liver at diagnosis. The patient underwent palliative Whipple procedure and subsequent cytoreductive radiofrequency ablations to her liver metastases. Unfortunately, after symptomatic improvement for three years, her disease progressed. Currently, she is on daily octreotide, achieving partial control of her symptoms.
  5. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS
    Bioresour Technol, 2015 Aug;190:395-401.
    PMID: 25976915 DOI: 10.1016/j.biortech.2015.04.084
    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.
  6. Foo WH, Chia WY, Tang DYY, Koay SSN, Lim SS, Chew KW
    J Hazard Mater, 2021 Sep 05;417:126129.
    PMID: 34229396 DOI: 10.1016/j.jhazmat.2021.126129
    Waste cooking oil (WCO) is considered as one of the hazardous wastes because improper disposal of WCO can cause significant environmental problems such as blockages of drains and sewers as well as water or soil pollution. In this review, the physical and chemical properties of WCO are evaluated along with its regulations and policies in different countries to promote WCO refined biofuels. Blended WCO can be an auxiliary fuel for municipal solid waste incinerators while the heat produced is able to form superheated steam and subsequently generate electricity via combined heat and power system. Also, WCO contains high ratio of hydrogen atoms compared to carbon and oxygen atoms, making it able to be catalytically cracked, synthesizing hydrogen gas. WCO-based biodiesel has been traditionally produced by transesterification in order to substitute petroleum-based diesel which has non-degradability as well as non-renewable features. Hence, the potentials of hazardous WCO as a green alternative energy source for electricity generation, hydrogen gas as well as biofuels production (e.g. biodiesel, biogas, biojet fuel) are critically discussed due to its attractive psychochemical properties as well as its economic feasibility. Challenges of the WCO utilization as a source of energy are also reported while highlighting its future prospects.
  7. Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW
    Food Res Int, 2023 Mar;165:112480.
    PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480
    Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
  8. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH
    Int J Nanomedicine, 2011;6:1817-23.
    PMID: 21931479 DOI: 10.2147/IJN.S23392
    Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications.
  9. Salehmin MNI, Lim SS, Satar I, Daud WRW
    Sci Total Environ, 2021 Mar 10;759:143485.
    PMID: 33279184 DOI: 10.1016/j.scitotenv.2020.143485
    Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-efficiency performance. The assembly of identical MDC units that hydraulically and electrically connected can improve the performance better than standalone MDCs. In the same manner, the coupling of MDCs with other BES or conventional water reclamation technology has also exhibits a promising performance. However, the scaling-up effort has been slowly progressing, leading to a lack of knowledge for guiding MDC technology into practicality. Many challenges remain unsolved and should be mitigated before MDCs can be fully implemented in real applications. Here, we aim to provide a comprehensive chronological-based review that covers technological limitations and mitigation strategies, which have been developed for standalone MDCs. We extend our discussion on how assembled, coupled and scaled-up MDCs have improved in comparison with standalone and lab-scale MDC systems. This review also outlines the prevailing challenges and potential mitigation strategies for scaling-up based on large-scale specifications and evaluates the prospects of selected MDC systems to be integrated with conventional anaerobic digestion (AD) and reverse osmosis (RO). This review offers several recommendations to promote up-scaling studies guided by the pilot scale BES and existing water reclamation technologies.
  10. Tobias DK, Merino J, Ahmad A, Aiken C, Benham JL, Bodhini D, et al.
    Nat Med, 2023 Oct;29(10):2438-2457.
    PMID: 37794253 DOI: 10.1038/s41591-023-02502-5
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  11. Lam YF, Lee LY, Chua SJ, Lim SS, Gan S
    Ecotoxicol Environ Saf, 2016 May;127:61-70.
    PMID: 26802563 DOI: 10.1016/j.ecoenv.2016.01.003
    Lansium domesticum peel (LDP), a waste material generated from the fruit consumption, was evaluated as a biosorbent for nickel removal from aqueous media. The effects of dosage, contact time, initial pH, initial concentration and temperature on the biosorption process were investigated in batch experiments. Equilibrium data were fitted by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models using nonlinear regression method with the best-fit model evaluated based on coefficient of determination (R(2)) and Chi-square (χ(2)). The best-fit isotherm was found to be the Langmuir model exhibiting R(2) very close to unity (0.997-0.999), smallest χ(2) (0.0138-0.0562) and largest biosorption capacity (10.1mg/g) at 30°C. Kinetic studies showed that the initial nickel removal was rapid with the equilibrium state established within 30min. Pseudo-second-order model was the best-fit kinetic model indicating the chemisorption nature of the biosorption process. Further data analysis by the intraparticle diffusion model revealed the involvement of several rate-controlling steps such as boundary layer and intraparticle diffusion. Thermodynamically, the process was exothermic, spontaneous and feasible. Regeneration studies indicated that LDP biosorbent could be regenerated using hydrochloric acid solution with up to 85% efficiency. The present investigation proved that LDP having no economic value can be used as an alternative eco-friendly biosorbent for remediation of nickel contaminated water.
  12. Ooi J, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Lim SS, Gan S
    Bioresour Technol, 2017 Dec;245(Pt A):656-664.
    PMID: 28917100 DOI: 10.1016/j.biortech.2017.08.153
    In this study, AB113 dye was successfully sequestered using a novel adsorbent made of mixed fish scales (MFS). The influence of adsorbent dosage, initial pH, temperature, initial concentration and contact time on the adsorption performance was investigated. The surface chemistry and morphology of the adsorbent were examined by FTIR, TGA and SEM. Amides, phosphate and carbonate groups were evidently responsible for the high affinity of MFS towards the dye. The adsorption equilibrium and kinetic were well described by Langmuir and pseudo-second-order models, respectively. The maximum adsorption capacities of MFS were 145.3-157.3mg/g at 30-50°C. The adsorption of AB113 dye onto the adsorbent was exothermic and spontaneous as reflected by the negative enthalpy and Gibbs energy changes. The results support MFS asa potential adsorbent for AB113 dye removal.
  13. Shearer FM, Longbottom J, Browne AJ, Pigott DM, Brady OJ, Kraemer MUG, et al.
    Lancet Glob Health, 2018 03;6(3):e270-e278.
    PMID: 29398634 DOI: 10.1016/S2214-109X(18)30024-X
    BACKGROUND: Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies.

    METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide.

    FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur.

    INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events.

    FUNDING: Bill & Melinda Gates Foundation.

  14. Wu X, Sivakumar M, Lim SS, Wu T, Heng PC
    Ultrason Sonochem, 2024 Feb;103:106782.
    PMID: 38309050 DOI: 10.1016/j.ultsonch.2024.106782
    This study investigates a prospective and straightforward method for producing graphene material derived from biomass, examining the influence of plant cell composition and functions. The experimental outcomes highlight ultrasound's crucial role in synthesizing graphene material sourced from biomass. Ultrasound, a pivotal element in the experiment, significantly affects graphene production from biomass by working synergistically with the liquid components in the solvent system. Notably, the ethanol content reduces the solution's surface tension, facilitating the effective dispersion of biochar and graphene oxide sheets throughout the process. Simultaneously, the water content maintains the solution's polarity, enhancing the cavitation effect induced by ultrasound. Biomass-derived graphene is exfoliated utilizing an ultrasonic bath system (134.4 W, 40 kHz, 0.5 W/cm2) from biochar. The as-synthesized graphene oxide exhibits a structure comprising a few layers while remaining intact, featuring abundant functional groups. Interestingly, the resulting product displays nanopores with an approximate diameter of 100 nm. These nanopores are attributed to preserving specific cell structures, particularly those with specialized cell wall structures or secondary metabolite deposits from biomass resources. The study's findings shed light on the impact of cellular structure on synthesizing graphene material sourced from biomass, emphasizing the potential application of ultrasound as a promising approach in graphene production.
  15. GBD 2019 Lip, Oral, and Pharyngeal Cancer Collaborators, Cunha ARD, Compton K, Xu R, Mishra R, Drangsholt MT, et al.
    JAMA Oncol, 2023 Oct 01;9(10):1401-1416.
    PMID: 37676656 DOI: 10.1001/jamaoncol.2023.2960
    IMPORTANCE: Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.

    OBJECTIVE: To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.

    EVIDENCE REVIEW: The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.

    FINDINGS: In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.

    CONCLUSIONS AND RELEVANCE: In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts.

  16. Lau Y, Htun TP, Lim PI, Ho-Lim SS, Klainin-Yobas P
    J Hum Lact, 2016 May;32(2):315-23.
    PMID: 26151966 DOI: 10.1177/0890334415591813
    BACKGROUND: The Iowa Infant Feeding Attitude Scale (IIFAS) was developed to measure maternal attitudes toward infant feeding, but a number of validated studies on the IIFAS found that it was subject to methodological limitations.

    OBJECTIVE: The purpose of this study was to evaluate the psychometric properties of the IIFAS among a multiethnic population in Singapore.

    METHODS: A cross-sectional research design was used on a sample of 417 antenatal women. The internal consistency and stability of the IIFAS were evaluated using Cronbach's α and test-retest reliability. Known-group comparisons discriminated certain group differences in a predictable way. A series of exploratory factor analyses (EFAs) was conducted to test the factor structure of the IIFAS using the maximum likelihood and principal axis factoring. The number of factors was selected according to theoretical and statistical considerations. A confirmatory factor analysis (CFA) was further performed to validate the factor structure constructed in the prior EFA.

    RESULTS: The IIFAS had a Cronbach's α and Pearson correlation of 0.79 and 0.85, respectively. The known-group comparisons among certain groups were supported. The EFA results showed that the 3-factor structure produced the most interpretable and theoretical sense. A second-order CFA was conducted to confirm the construct dimensionality of the 15-item IIFAS, with satisfactory fit indices found.

    CONCLUSION: The 15-item IIFAS is a psychometrically sound measurement tool that health care professionals can use to understand the diverse infant feeding attitudes and knowledge among different ethnic groups in order to provide breastfeeding interventions that are culturally sensitive.

  17. Lee EH, Lim SS, Yuen KH, Lee CY
    J Pharm Pharmacol, 2019 May;71(5):860-868.
    PMID: 30515807 DOI: 10.1111/jphp.13052
    OBJECTIVES: This study aims to investigate the blood-brain barrier (BBB) permeability of curcumin analogues with shortened linkers and their ability to protect against amyloid-beta toxicity in a whole organism model.

    METHOD: Four curcumin analogues were synthesized. These analogues and curcumin were evaluated for their BBB permeability in the parallel artificial membrane permeability assay. The transgenic Caenorhabditis elegansGMC101 that expresses human Aβ1-42 was treated with the compounds to evaluate their ability to delay Aβ-induced paralysis. Expression of skn-1mRNA was examined on nematodes treated with selected efficacious compounds. In vitro Aβ aggregation in the presence of the compounds was performed.

    KEY FINDINGS: The four analogues showed improved BBB permeability vs curcumin in the PAMPA with the hemi-analogue C4 having the highest permeability coefficient. At 100 μm, analogues C1 and C4 as well as curcumin significantly prolonged the survival of the nematodes protecting against Aβ toxicity. However, only curcumin and C4 showed protection at lower concentrations. skn-1mRNA was significantly elevated in nematodes treated with curcumin and C4 indicating SKN-1/Nrf activation as a possible mode of action.

    CONCLUSIONS: Analogue C4 provides a new lead for the development of a curcumin-based compound for protection against Aβ toxicity with an improved BBB permeability.

  18. Cardosa MJ, Noor Sham S, Tio PH, Lim SS
    PMID: 3238470
    A dot enzyme immunoassay (DEIA) was used to determine the levels of antibody to dengue 3 virus in the acute and convalescent sera of febrile patients with a clinical diagnosis of dengue fever or dengue haemorrhagic fever. The antibody titres were compared with titres determined by the haemagglutination inhibition (HI) test. The results of the study showed that, besides being more simple to perform, the DEIA is in order of magnitude more sensitive than the HI test. Furthermore, the data suggest that it is possible to use a single dilution as a cutoff point to predict with reasonable accuracy, if a patient has had a recent dengue infection. The DEIA test for antibodies to dengue virus is an appropriate technology highly suitable for rapid diagnosis and surveillance in developing countries.
  19. Chew KW, Khoo KS, Foo HT, Chia SR, Walvekar R, Lim SS
    Chemosphere, 2020 Dec 15;268:129322.
    PMID: 33359993 DOI: 10.1016/j.chemosphere.2020.129322
    With the rapid urbanisation happening around the world followed by the massive demand for clean energy resources, green cities play a pivotal role in building a sustainable future for the people. The continuing depletion of natural resources has led to the development of renewable energy with algae as the promising source. The high growth rate of microalgae and their strong bio-fixation ability to convert CO2 into O2 have been gaining attention globally and intensive research has been conducted regarding the microalgae benefits. The focus on potential of microalgae in contributing to the development of green cities is rising. The advantage of microalgae is their ability to gather energy from sunlight and carbon dioxide, followed by transforming the nutrients into biomass and oxygen. This leads to the creation of green cities through algae cultivation as waste and renewable materials can be put to good use. The challenges that arise when using algae and the future prospect in terms of SDGs and economy will also be covered in this review. The future of green cities can be enhanced with the adaptation of algae as the source of renewable plants to create a better outlook of an algae green city.
  20. Salehmin MNI, Hil Me MF, Daud WRW, Mohd Yasin NH, Abu Bakar MH, Sulong AB, et al.
    Sci Total Environ, 2023 Jan 10;855:158527.
    PMID: 36096221 DOI: 10.1016/j.scitotenv.2022.158527
    Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links