Displaying all 17 publications

Abstract:
Sort:
  1. Pui LP, Mohammed AS, Ghazali HM
    Acta Sci Pol Technol Aliment, 2020 9 27;19(3):319-331.
    PMID: 32978914 DOI: 10.17306/J.AFS.0804
    BACKGROUND: 5'-Phosphodiesterase (5'-PDE) is an enzyme that hydrolyzes RNA to form 5'-inosine monophosphate (5'-IMP) and 5'-guanosine monophosphate (5'-GMP). These 5'-nucleotides can function as flavor enhancers. Adzuki beans (Vigna angularis L.) are found to be high in 5'-PDE.

    METHODS: 5'-phosphodiesterase (5'-PDE) enzyme was characterized from adzuki beans, in which the optimum pH and temperature were determined. In addition, the stability of 5'-PDE was assessed at different pH and temperature. The effects of cations and EDTA were evaluated to characterize the 5'-PDE enzymes further.

    RESULTS: The alkaline 5'-phosphodiesterase has an optimum pH of 8.5. This enzyme is also thermostable, with an optimum temperature of 80°C. The stability in terms of temperature and pH was also determined, and was found to be stable in the pH range of 7.0-8.5. This enzyme was found to retain more than 80% of its activity for 4 days at 60 and 65°C. In addition, the effects of 14 different metal ions, 4 types of detergents and ethylenediaminetetraacetic acid (EDTA) on 5'-PDE were studied. Ca2+, K+, Mg2+ and Li+ activated 5'-PDE while Na+, Zn2+, Ni+, Hg+, Cu2+, Pb2+, Fe2+, Al3+, Ba2+ and Co2+ were inhibitory. EDTA, Triton X-100 and sodium dodecyl sulfate (SDS) were strong inhibitors of 5'-PDE, while Tween 80 and Tween 20 were slightly inhibitory. The effects of cations and EDTA suggest that 5'-PDE from adzuki beans is a metalloenzyme.

    CONCLUSIONS: Although 5'-PDE from adzuki beans has a high temperature optimum of 80°C, the enzyme is more stable at 60°C, and different cations affected the activity of the enzyme differently.

  2. Al Saleh Y, Al Busaidi N, Al Dahi W, Almajnoni M, Mohammed AS, Alshali K, et al.
    Adv Ther, 2023 Jul;40(7):2965-2984.
    PMID: 37233878 DOI: 10.1007/s12325-023-02529-7
    Type 2 diabetes mellitus (T2DM) and hypertension are leading risk factors for death and disability in the Middle East. Both conditions are highly prevalent, underdiagnosed and poorly controlled, highlighting an urgent need for a roadmap to overcome the barriers to optimal glycaemic and blood pressure management in this region. This review provides a summary of the Evidence in Diabetes and Hypertension Summit (EVIDENT) held in September 2022, which discussed current treatment guidelines, unmet clinical needs and strategies to improve treatment outcomes for patients with T2DM and hypertension in the Middle East. Current clinical guidelines recommend strict glycaemic and blood pressure targets, presenting several treatment options to achieve and maintain these targets and prevent complications. However, treatment targets are infrequently met in the Middle East, largely due to high clinical inertia among physicians and low medication adherence among patients. To address these challenges, clinical guidelines now provide individualised therapy recommendations based on drug profiles, patient preferences and management priorities. Efforts to improve the early detection of prediabetes, T2DM screening and intensive, early glucose control will minimise long-term complications. Physicians can use the T2DM Oral Agents Fact Checking programme to help navigate the wide range of treatment options and guide clinical decision-making. Sulfonylurea agents have been used successfully to manage T2DM; a newer agent, gliclazide MR (modified release formulation), has the advantages of a lower incidence of hypoglycaemia with no risk of cardiovascular events, weight neutrality and proven renal benefits. For patients with hypertension, single-pill combinations have been developed to improve efficacy and reduce treatment burden. In conjunction with pragmatic treatment algorithms and personalised therapies, greater investments in disease prevention, public awareness, training of healthcare providers, patient education, government policies and research are needed to improve the quality of care of patients with T2DM and/or hypertension in the Middle East.
  3. Abdullah AS, Mohammed AS, Abdullah R, Mirghani ME, Al-Qubaisi M
    PMID: 24962691 DOI: 10.1186/1472-6882-14-199
    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals.
  4. Abdullah AS, Mohammed AS, Rasedee A, Mirghani ME, Al-Qubaisi MS
    PMID: 25881293 DOI: 10.1186/s12906-015-0575-x
    In this study, the effect of mango kernel extract in the induction of apoptosis of the breast cancer (MDA-MB-231) cell line was examined. This is an attempt to discover alternatives to current therapeutic regimes in the treatment of breast cancers.
  5. Hai T, Alshahri AH, Mohammed AS, Sharma A, Almujibah HR, Mohammed Metwally AS, et al.
    Chemosphere, 2023 Sep;334:138980.
    PMID: 37207897 DOI: 10.1016/j.chemosphere.2023.138980
    The use of renewable fuels leads to reduction in the use of fossil fuels and environmental pollutants. In this study, the design and analysis of a CCPP based on the use of syngas produced from biomass is discussed. The studied system includes a gasifier system to produce syngas, an external combustion gas turbine and a steam cycle to recover waste heat from combustion gases. Design variables include syngas temperature, syngas moisture content, CPR, TIT, HRSG operating pressure, and PPTD. The effect of design variables on performance components such as power generation, exergy efficiency and total cost rate of the system is investigated. Also, through multi-objective optimization, the optimal design of the system is done. Finally, it is observed that at the final decisioned optimal point, the produced power is 13.4 MW, the exergy efficiency is 17.2%, and the TCR is 118.8 $/h.
  6. Loi CC, Boo HC, Mohammed AS, Ariffin AA
    Food Chem, 2011 Sep 1;128(1):223-6.
    PMID: 25214353 DOI: 10.1016/j.foodchem.2010.12.108
    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural.
  7. Abdullah AS, Mohammed AS, Rasedee A, Mirghani ME
    Int J Mol Sci, 2015;16(2):3528-36.
    PMID: 25664859 DOI: 10.3390/ijms16023528
    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.
  8. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    Int J Mol Sci, 2016 Nov 11;17(11).
    PMID: 27845736
    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500-10,000 g/mol), PEG concentration (9%-20%), concentrations of NaCl (0%-10%) and the citrate buffer (8%-16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R²). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.
  9. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

  10. Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F
    J Biotechnol, 2024 Mar 10;383:1-12.
    PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013
    The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
  11. Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, et al.
    J Cell Mol Med, 2024 Feb;28(4):e18105.
    PMID: 38339761 DOI: 10.1111/jcmm.18105
    Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
  12. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    PMID: 27836491 DOI: 10.1016/j.jchromb.2016.10.037
    This report shows the partitioning and purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031) by solid-state fermentation (SSF). In the present analysis, some of the important parameters such as PEG concentration, PEG molecular mass, salt concentration and buffer concentration were optimised through the response surface methodology (RSM). The optimum aqueous two-phase systems (ATPS) environment consisted of 13.8% (w/w) phosphate buffer, 9.2% (w/w) PEG-3000 and 3.3% (w/w) NaCl at 25°C. The RSM approach was proved to be the most suitable methodology for the recovery of desired enzymes. In this method, the enzyme partitioned into the top phase of the PEG-buffer-NaCl ATPS. Under this experimental environment, the purification factor was found to be 33.9, the partition coefficient was 4.0 and the yield was found to be 84.0% of lipase. Moreover, the experimental and predicted results were in considerable agreement, which established the reliability and validity of the proposed model. The ATPS methodology is proven to be effective for the primary recovery of lipase at a low cost with a large loading capacity and possibility of linear scale up. In addition to using the existing methodologies for improving enzyme production, the use of statistical optimisation of the constituents of phases through RSM continues to be the basic and practical method.
  13. Jibril MM, Haji-Hamid A, Abas F, Karrupan J, Mohammed AS, Jaafar AH, et al.
    J Food Biochem, 2022 Feb;46(2):e14058.
    PMID: 34981526 DOI: 10.1111/jfbc.14058
    The present research aimed to investigate the attenuative effects of watermelon (Citrullus lanatus) leaf extract on biochemical and histological parameters in a high-fat diet combined with a low-dose streptozotocin (HFD/STZ)-induced type 2 diabetes mellitus. Forty male Sprague Dawley rats were divided into five groups, including three supplemented groups: 10 mg metformin/kg BW (HFD/STZ +M), 200 mg watermelon leaf extract /kg BW (HFD/STZ + LD), and 400 mg watermelon leaf extract /kg BW (HFD/STZ + HD). The efficacy of the 6-week intervention was evaluated by measuring body weight, fasting blood sugar, serum insulin, lipid profile, superoxide dismutase, catalase, malondialdehyde, and serum liver markers. Kidneys and liver structure were defined by histopathological examination. Results revealed that intervention with watermelon leaf extract attenuated the biochemical parameters and the structural changes in kidneys and liver. In brief, the watermelon leaf extract treatment could effectively decrease complications associated with diabetes better than metformin, and that the treatment with 400 mg/kg BW is the most potent. PRACTICAL APPLICATIONS: This was the first study to investigate the antidiabetic potential of watermelon leaf extract in obese diabetic rats. Data revealed that the watermelon leaf extract significantly attenuated the HFD/STZ-induced diabetes changes, as evidenced by the biochemical and histological data. Hence, watermelon leaf could be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for holistic management of diabetes mellitus and its complications.
  14. Tajabadi N, Baradaran A, Ebrahimpour A, Rahim RA, Bakar FA, Manap MY, et al.
    Microb Biotechnol, 2015 Jul;8(4):623-32.
    PMID: 25757029 DOI: 10.1111/1751-7915.12254
    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products.
  15. Ado MA, Abas F, Mohammed AS, Ghazali HM
    Molecules, 2013;18(12):14651-69.
    PMID: 24287996 DOI: 10.3390/molecules181214651
    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.
  16. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
  17. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links