Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
    Matched MeSH terms: Acetylcholine
  2. Nurul-Iman BS, Kamisah Y, Jaarin K, Qodriyah HM
    PMID: 23861707 DOI: 10.1155/2013/629329
    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.
    Matched MeSH terms: Acetylcholine
  3. Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K
    J Diet Suppl, 2020 Oct 14.
    PMID: 33962540 DOI: 10.1080/19390211.2020.1830223
    Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p 
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  4. Lee JB, Bae JS, Matsumoto T, Yang HM, Min YK
    Int J Biometeorol, 2009 Mar;53(2):149-57.
    PMID: 19048305 DOI: 10.1007/s00484-008-0197-9
    Natives of the tropics are able to tolerate high ambient temperatures. This results from their long-term residence in hot and often humid tropical climates. This study was designed to compare the peripheral mechanisms of thermal sweating in tropical natives with that of their temperate counterparts. Fifty-five healthy male subjects including 20 native Koreans who live in the temperate Korean climate (Temperate-N) and 35 native tropical Malaysian men that have lived all of their lives in Malaysia (Tropical-N) were enrolled in this study after providing written informed consent to participate. Quantitative sudomotor axon reflex testing after iontophoresis (2 mA for 5 min) with 10% acetylcholine (ACh) was used to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, and oral and skin temperature changes were measured. The sweat onset time of AXR (nicotinic-receptor-mediated) was 56 s shorter in the Temperate-N than in the Tropical-N subjects (P < 0.0001). The nicotinic-receptor-mediated sweating activity AXR (1), and the muscarinic-receptor-mediated sweating activity DIR, in terms of sweat volume, were 103% and 59% higher in the Temperate-N compared to the Tropical-N subjects (P < 0.0001). The Temperate-N group also had a 17.8% (P < 0.0001) higher active sweat gland density, 35.4% higher sweat output per gland, 0.24 degrees C higher resting oral temperature, and 0.62 degrees C higher resting forearm skin temperature compared to the Tropical-N subjects (P < 0.01). ACh iontophoresis did not influence oral temperature, but increased skin temperature near where the ACh was administered, in both groups. These results suggest that suppressed thermal sweating in the Tropical-N subjects was, at least in part, due to suppressed sweat gland sensitivity to ACh through both recruitment of active sweat glands and the sweat gland output per each gland. This physiological trait guarantees a more economical use of body fluids, thus ensuring more efficient protection against heat stress.
    Matched MeSH terms: Acetylcholine/administration & dosage*
  5. Ahmad A, Ramasamy K, Jaafar SM, Majeed AB, Mani V
    Food Chem Toxicol, 2014 Mar;65:120-8.
    PMID: 24373829 DOI: 10.1016/j.fct.2013.12.025
    The present study was undertaken to compare the neuroprotective effects between total isoflavones from soybean and tempeh against scopolamine-induced cognitive dysfunction. Total isoflavones (10, 20 and 40mg/kg) from soybean (SI) and tempeh (TI) were administered orally to different groups of rats (n=6) for 15days. Piracetam (400mg/kg, p.o.) was used as a standard drug while scopolamine (1mg/kg, i.p.) was used to induce amnesia in the animals. Radial arm and elevated plus mazes served as exteroceptive behavioural models to measure memory. Brain cholinergic activities (acetylcholine and acetylcholinesterase) and neuroinflammatory activities (COX-1, COX-2, IL-1β and IL10) were also assessed. Treatment with SI and TI significantly reversed the scopolamine effect and improved memory with TI group at 40mg/kg, p.o. exhibiting the best improvement (p<0.001) in rats. The TI (10, 20 and 40mg/kg, p.o.) significantly increased (p<0.001) acetylcholine and reduced acetylcholinesterase levels. Meanwhile, only a high dose (40mg/kg, p.o.) of SI showed significant improvement (p<0.05) in the cholinergic activities. Neuroinflammation study also showed that TI (40mg/kg, p.o.) was able to reduce inflammation better than SI. The TI ameliorates scopolamine-induced memory in rats through the cholinergic neuronal pathway and by prevention of neuroinflammation.
    Matched MeSH terms: Acetylcholine/metabolism; Acetylcholinesterase/metabolism
  6. Jaarin K, Mustafa MR, Leong XF
    Clinics (Sao Paulo), 2011;66(12):2125-32.
    PMID: 22189740
    OBJECTIVES: The goal of this study was to determine the possible mechanism that is involved in the blood pressure-raising effect of heated vegetable oils.

    METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta.

    RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils.

    CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.

    Matched MeSH terms: Acetylcholine/pharmacology
  7. Sanip Z, Hanaffi SH, Ahmad I, Yusoff SS, Rasool AH, Yusoff HM
    Tob Induc Dis, 2015;13(1):32.
    PMID: 26346914 DOI: 10.1186/s12971-015-0052-9
    BACKGROUND: Studies have demonstrated that secondhand smoke (SHS) exposure could impair endothelial function. However, the effect of SHS exposure specifically on microvascular endothelial function is not well understood. This study aimed to determine the effects of SHS exposure on microvascular endothelial function among non-smoking, generally healthy women.

    FINDINGS: We studied 127 women; and based on their hair nicotine levels measured using gas chromatography-mass spectrometry, 25 of them were categorized as having higher hair nicotine levels, 25 were grouped as having lower hair nicotine and 77 women were grouped into the non-detected group. The non-detected group did not have detectable levels of hair nicotine. Anthropometry, blood pressure (BP), lipid profile and high-sensitivity C-reactive protein (hsCRP) were measured accordingly. Microvascular endothelial function was assessed non-invasively using laser Doppler fluximetry and the process of iontophoresis involving acetylcholine and sodium nitroprusside as endothelium-dependent and endothelium-independent vasodilators respectively. The mean hair nicotine levels for higher and lower hair nicotine groups were 0.74 (1.04) and 0.05 (0.01) ng/mg respectively. There were no significant differences in anthropometry, BP, lipid profile and hsCRP between these groups. There were also no significant differences in the microvascular perfusion and endothelial function between these groups.

    CONCLUSION: In this study, generally healthy non-smoking women who have higher, lower and non-detected hair nicotine levels did not show significant differences in their microvascular endothelial function. Low levels of SHS exposure among generally healthy non-smoking women may not significantly impair their microvascular endothelial function.

    Matched MeSH terms: Acetylcholine
  8. Lau YS, Machha A, Achike FI, Murugan D, Mustafa MR
    Exp Biol Med (Maywood), 2012 Jan;237(1):93-8.
    PMID: 22156043 DOI: 10.1258/ebm.2011.011145
    Boldine, a major aporphine alkaloid found in Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of endothelial dysfunction in hypertension. In the present study, we investigated the effects of boldine on endothelial dysfunction in hypertension using spontaneously hypertensive rats (SHR), the most studied animal model of hypertension. SHR and their age-matched normotensive Wistar-Kyoto (WKY) rats were treated with boldine (20 mg/kg per day) or its vehicle, which served as control, for seven days. Control SHR displayed higher systolic blood pressure (SBP), reduced endothelium-dependent aortic relaxation to acetylcholine (ACh), marginally attenuated endothelium-independent aortic relaxation to sodium nitroprusside (SNP), increased aortic superoxide and peroxynitrite production, and enhanced p47(phox) protein expression as compared with control WKY rats. Boldine treatment significantly lowered SBP in SHR but not in WKY. Boldine treatment enhanced the maximal relaxation to ACh in SHR, but had no effect in WKY, whereas the sensitivity to ACh was increased in both SHR and WKY aortas. Boldine treatment enhanced sensitivity, but was without effect on maximal aortic relaxation responses, to SNP in both WKY and SHR aortas. In addition, boldine treatment lowered aortic superoxide and peroxynitrite production and downregulated p47(phox) protein expression in SHR aortas, but had no effect in the WKY control. These results show that boldine treatment exerts endothelial protective effects in hypertension, achieved, at least in part, through the inhibition of NADPH-mediated superoxide production.
    Matched MeSH terms: Acetylcholine/pharmacology
  9. Hisyam Jamari, Mohd Salleh Rofiee, Richard James Johari, Mohd Zaki Salleh, Teh, Lay Kek
    MyJurnal
    The potential of Moringa oleifera Lam. (Moringaceae) and Centella asiatica (L.) Urban (Apiaceae) extracts (TGT-PRIMAAGE) in slowing the decline of memory and learning activity was investigated using D-galactose-induced ageing rat model. The extracts were profiled and standardised based on markers identified using LC/MS-QTOF. Toxicity study of the extract was done, and the rat did not show any sign of toxicity. The extract was orally administered to the rat and dose dependent (100, 500 and 1000 mg/kg) efficacy were investigated. The rats were subjected to Morris Water Maze whereby 3 parameters were studied (number of entry to platform, latency and novel object recognition). Plasma was collected for the determination of catalase (CAT) activity and levels of malondialdehyde (MDA) and advanced glycation end products (AGEs). The activity of acetylcholinesterase (AChE), level of acetylcholine (ACh) and lipid peroxidation (LPO) were measured using the brain lysates. Significant improvement (p < 0.05) was seen in the memory and learning abilities in the aged rats that received medium and high dose of TGT-PRIMAAGE, and tocotrienol. Rats treated with TGT-PRIMAAGE had also shown improved CAT activity and resulted in reduced LPO. The level of ACh was found increased in parallel with the reduced AChE activity. The capabilities of learning and memory of the TGT-PRIMAAGE treated rats were enhanced via inhibition of AChE activity and subsequently increased level of ACh.
    Matched MeSH terms: Acetylcholine; Acetylcholinesterase
  10. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Acetylcholine/administration & dosage
  11. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Acetylcholine/metabolism; Acetylcholinesterase/metabolism
  12. Si LY, Kamisah Y, Ramalingam A, Lim YC, Budin SB, Zainalabidin S
    Appl Physiol Nutr Metab, 2017 Jul;42(7):765-772.
    PMID: 28249121 DOI: 10.1139/apnm-2016-0506
    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) Cmax = 234.5 ± 3.9%, Endo-(-) Cmax = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) Cmax = 264.5 ± 6.9%, Endo-(-) Cmax = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) Rmax = 73.2 ± 2.1%, Endo-(-) Rmax = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) Rmax = 57.8 ± 1.7%, Endo-(-) Rmax = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.
    Matched MeSH terms: Acetylcholine/pharmacology
  13. Muthuraju, S., Abdullah, J.M.
    Orient Neuron Nexus, 2011;2(1):10-14.
    MyJurnal
    Neuronal cell death results from various circumstances such as hypoxia, ischemic and neurodegenerative diseases (NDs). In these events, the resulting modification of neurotransmitters, either excitatory or inhibitory, mediate much of the neuronal damage. However, this consequence depends upon their pre and post synaptic receptor activities which are the key mechanism for signal regulation. Among these, acetylcholine (ACh) is a well known neurotransmitter which is predominantly involved in neuroprotection as well as cognitive functions through its receptors activity, particularly the nicotinic subtypes. Several lines of evidence suggest that among these subtypes, a7 nicotinic acetylcholine receptor (a7nAChR) offers much promise for neuroprotective role in relation to the central nervous system (CNS) disorders like schizophrenia and Alzheimer's disease (AD). Several lines of evidence exist to show the potential mechanisms in which this nAChR subtype and its agonists such as nicotine, that trigger the a7nAChR-mediated suppression of neuronal cell death. This review focuses on the potential role of a7nAChR in neuroprotection by examining recent experimental data, both in vitro and in vivo, that argue for the neuroprotective role of a7nAChR in the CNS.
    Matched MeSH terms: Acetylcholine
  14. Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN
    Life Sci, 2021 Jan 15;265:118826.
    PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826
    Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis.

    AIMS: In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy.

    MATERIALS AND METHODS: A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles.

    KEY FINDINGS: Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission.

    SIGNIFICANCE: The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.

    Matched MeSH terms: Acetylcholine/metabolism
  15. Thevathasan OI, Archdeacon JW
    Med J Malaya, 1966 Jun;20(4):306-15.
    PMID: 4224339
    Matched MeSH terms: Acetylcholine/pharmacology*
  16. Al-Tahami BA, Yvonne-Tee GB, Halim AS, Ismail AA, Rasool AH
    Methods Find Exp Clin Pharmacol, 2010 Apr;32(3):181-5.
    PMID: 20448860 DOI: 10.1358/mf.2010.32.3.1423887
    Iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) combined with laser Doppler fluximetry (LDF) is a tool used to determine microvascular endothelial function. Our aim was to study the reproducibility of different parameters of this technique using iontophoresis with low current strength on the forearm skin of healthy subjects. Baseline skin perfusion was done before application of five current pulses with 1 min of current-free interval. Current strength of 0.007 mA, current density of 0.01 mA/cm(2) and charge density of 6 mC/cm(2) were used, along with 1% ACh and 1% SNP. The absolute maximum change in perfusion (max), percent change in perfusion (% change), peak change in perfusion (peak) and area under the curve during iontophoresis (AUC) at the anodal and cathodal leads were recorded. Measurements were performed in three sessions for 2 days. The coefficient of variation (CV) was calculated for each parameter. Among the parameters studied, maximum change in perfusion and peak flux were the most reproducible parameters.
    Matched MeSH terms: Acetylcholine/pharmacokinetics
  17. Kunasegaran T, Mustafa MR, Achike FI, Murugan DD
    Eur J Pharmacol, 2017 Mar 15;799:160-170.
    PMID: 28213289 DOI: 10.1016/j.ejphar.2017.02.022
    Pioglitazone is an anti-diabetic drug with potential to cause adverse effects following prolonged use. This study, therefore, investigated the effects of combination treatment of a subliminal concentration of pioglitazone and quercetin, a potent antioxidant, on vascular reactivity of aorta isolated from fructose-streptozotocin (F-STZ)-induced diabetic rats. Relaxation to acetylcholine and sodium nitroprusside, and contraction to phenylephrine were tested in organ bath chambers following pre-incubation with vehicle (DMSO; 0.05%), quercetin (10-7 M), pioglitazone (10-7 M), or their combination (P+Q; 10-7 M each drug). Subliminal concentration of quercetin or pioglitazone did not alter the acetylcholine- induced relaxation nor the phenylephrine-induced contraction in both normal rat and diabetic F-STZ induced tissues. However, P+Q combination synergistically improved the impaired acetylcholine-induced relaxation and decreased the elevated phenylephrine-induced contraction in aortic rings from diabetic, but not in the normal rats. Neither mono nor combination treatment altered sodium nitroprusside-induced relaxation. The combination also synergistically decreased superoxide anion and increased nitric oxide production compared to the individual treatments in aorta from diabetic rats. Overall, these data demonstrated a synergistic effect, in which, a combination (P+Q; 10-7 M each drug) caused a significantly greater effect than 10-6 M of either agent in improving endothelial function of isolated diabetic aorta. In conclusion, a combination of subliminal concentrations of pioglitazone and quercetin is able to decrease oxidative stress and provide synergistic vascular protection in type 2 diabetes mellitus and thus the possibility of using quercetin as a supplement to pioglitazone in the treatment of diabetes with the goal of reducing pioglitazone toxicity.
    Matched MeSH terms: Acetylcholine
  18. Zulkifli MH, Viswenaden P, Jasamai M, Azmi N, Yaakob NS
    Biomed Pharmacother, 2019 Feb 20;112:108630.
    PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630
    5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
    Matched MeSH terms: alpha7 Nicotinic Acetylcholine Receptor
  19. Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, et al.
    PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492
    In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
    Matched MeSH terms: Acetylcholine/pharmacology; Acetylcholinesterase
  20. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Acetylcholine/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links