Displaying publications 1 - 20 of 596 in total

Abstract:
Sort:
  1. Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, et al.
    Proc Natl Acad Sci U S A, 2014 Sep 16;111(37):13257-63.
    PMID: 25136111 DOI: 10.1073/pnas.1404067111
    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
    Matched MeSH terms: Agriculture
  2. Sow AY, Ismail A, Zulkifli SZ
    Bull Environ Contam Toxicol, 2013 Jul;91(1):6-12.
    PMID: 23666324 DOI: 10.1007/s00128-013-1009-4
    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
    Matched MeSH terms: Agriculture
  3. Sow AY, Ismail A, Zulkifli SZ
    Environ Sci Pollut Res Int, 2013 Dec;20(12):8964-73.
    PMID: 23757028 DOI: 10.1007/s11356-013-1857-9
    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
    Matched MeSH terms: Agriculture
  4. Chang, Geraldine Olive Ju Lien, Lai, Ven Inn, Tan, Aileen Shau Hwai, Zulfigar Yasin
    Trop Life Sci Res, 2016;27(11):45-51.
    MyJurnal
    A small scale laboratory study was conducted to determine the effects of
    salinity ranging from 15, 20, 25, 30, 35, 40, and 45 ppt on the filtration rates of juvenile
    oyster Crassostrea iredalei with 25 ppt as the control. Three juvenile oysters (shell weight:
    1.04 ± 0.12 g; shell length: 1.9 ± 0.2 cm; shell height: 1.9 ± 0.1 cm) were used to test the
    filtration rates in each salinity over the course of 8 hours. The hourly filtration rates were
    determined from the exponential decrease in algal (Chaetoceros calcitrans) concentration
    as a function of time. The oyster in 35 ppt salinity produced the highest overall filtration
    rate (FR2) with 134.06 ± 15.66 mL–1 hr–1 oyster–1 and the lowest overall filtration rate (FR2)
    occurred in oyster exposed to 15 ppt and 45 ppt with 31.30 ± 6.90 mL–1 hr–1 oyster–1 and
    32.11 ± 7.68 mL–1 hr–1 oyster–1
    respectively throughout the 8 hours. The result from this
    study can be useful for optimum oyster culturing and the oysters can be employed as a
    natural biofilter in marine polyculture farming.
    Matched MeSH terms: Agriculture
  5. Aburas, Maher Milad, Sabrina Ho Abdullah, Mohammad Firuz Ramli, Zulfa Hanan Ash'aari
    MyJurnal
    Remote sensing and geographic information system techniques are significant and popular approaches that have been used in recent years to measure and map urban growth patterns. This paper primarily aims to provide a basis for a literature review of urban growth measurement and mapping by using different methods. For this purpose, the general characteristics of measuring and mapping urban growth patterns are described and classified. The strengths and weaknesses of the various methods have been identified from an analysis and discussion of the characteristics of the techniques. Results of reviews confirm that combining quantitative and qualitative techniques, such as Shannon approach and change detection, to measure and map urban growth patterns will improve understanding of the phenomenon of urban growth. Moreover, using social and economic data such as population and income data will improve understanding of the relationships between causes and effects. The integration of social and economic factors with quantitative and qualitative techniques will contribute to a perfect evaluation of urban growth patterns and land use changes, taking technical, social, economic, spatial, and temporal factors into account.
    Matched MeSH terms: Agriculture
  6. Chua LS, Zukefli SN
    J Integr Med, 2016 11;14(6):415-428.
    PMID: 27854193 DOI: 10.1016/S2095-4964(16)60282-0
    Edible bird's nest (EBN) is currently widely consumed by the Chinese community as tonic food and functional food, which is believed to have many medicinal benefits. Some studies have reported the biochemical compositions of EBN, graded on the basis of colour, nitrate and nitrite contents. Other studies have shown significant biological effects, while ongoing research is in progress to explore potential pharmacological applications. The high demand for EBNs in the global market has forced the local regulatory bodies to monitor swiftlet farming activities, including the EBN cleaning process. Furthermore, numerous techniques have been developed to authenticate EBN; proteomics is likely to be the most promising of these methods. However, there are limited numbers of relevant protein sequences deposited at the database. More research is needed at the molecular level to explore the mechanisms behind the biological functions, such as bone strength improvement, skin rejuvenation, epidermal growth factor activity and cell proliferation.The current and future prospects of EBN and swiftlet farming are critically reviewed in this article.
    Matched MeSH terms: Agriculture
  7. Amid M, Manap MY, Zohdi NK
    Biomed Res Int, 2014;2014:259238.
    PMID: 25328883 DOI: 10.1155/2014/259238
    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.
    Matched MeSH terms: Agriculture
  8. Cazzolla Gatti R, Liang J, Velichevskaya A, Zhou M
    Sci Total Environ, 2019 Feb 20;652:48-51.
    PMID: 30359800 DOI: 10.1016/j.scitotenv.2018.10.222
    The globalization of the palm oil trade poses a menace to the ecosystem integrity of Southeast Asia. In this short communication, we briefly discuss why palm oil certifications may have failed as an effective means to halt forest degradation and biodiversity loss. From a comparison of multiple new datasets, we analysed recent tree loss in Indonesia, Malaysia, and Papua New Guinea, and discovered that, from 2001 to 2016, about 40% of the area located in certified concessions suffered from habitat degradation, deforestation, fires, or other tree damages. Certified concessions have been subject to more tree removals than non-certified ones. We also detect significant tree loss before and after the start of certification schemes. Beyond non-governmental organisations' concern that Roundtable on Sustainable Palm Oil (RSPO) and Palm Oil Innovation Group (POIG) certifications allow ongoing clearance of any forest not identified as of high conservation values (HCV) or high carbon stock (HCS), we suggest an alarming and previously overlooked situation, such as that current "sustainable palm oil" is often associated with recent habitat degradation and forest loss. In other words, certified palm oil production may not be so sustainable.
    Matched MeSH terms: Agriculture/methods*; Agriculture/statistics & numerical data
  9. Chou L, Dai J, Qian X, Karimipour A, Zheng X
    Agric Water Manag, 2021 Feb 28;245:106583.
    PMID: 33100487 DOI: 10.1016/j.agwat.2020.106583
    With the development of Chinese economy, more and more attention has been paid to environmental protection, the implementation of water price policy affects economic and environmental changes in China. This paper analyzes the impact of water price policy on agricultural land use and the scale of water pollution discharge in 240 cities in China between 2001 and 2017, by including data from China Urban Statistical Yearbook and China Land & Resources Almanac. The theoretical analysis of this study indicates that the optimal scale of pollution depends on the local initial endowment, economic investment capital and the marginal cost of environmental pollution caused by government's economic activities. Furtherly, the economic activities have a worsening impact on environmental pollution, but when the government implements environmental protection and water price policy measures in response to environmental pollution caused by economic activities, it has a significant impact on the decline in the scale of pollution. The government has promoted the pollution suppression model in the formulation of water prices, which has internalized the external cost of pollution in economic activities and can effectively reduce the scale of agricultural water pollution discharge.
    Matched MeSH terms: Agriculture
  10. Xomphoutheb T, Jiao S, Guo X, Mabagala FS, Sui B, Wang H, et al.
    Sci Rep, 2020 04 20;10(1):6574.
    PMID: 32313140 DOI: 10.1038/s41598-020-63567-7
    An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
    Matched MeSH terms: Agriculture
  11. Khan MA, Mehmood S, Ullah F, Khattak A, Zeb MA
    Sains Malaysiana, 2017;46:917-924.
    The present study investigated the concentration of metals in commonly grown vegetables (Luffa acutangula L., Zea mays L., Solanum melongena L.) irrigated with waste water in District Bannu, Khyber Pakhtunkhwa, Pakistan. The pH (5.80) and electrical conductivity (13 dS/m) of waste water indicated the acidic nature that is not suitable for irrigation purposes. Soil and vegetables samples were analyzed for metals concentration through flame atomic absorption spectrometry (Varian FAAS-240). The findings showed that waste water irrigated soil was highly contaminated with Cd (4.62 mg/kg) which was above permissible limits set by European Union Standard (EU 2006, 2002). The concentrations of heavy metals such as Cr and Cd in vegetables were higher than the permissible limits set by World Health Organization/Food and Agriculture Organization U.S.A guidelines 2001. The health hazard quotient (HQ) of waste water irrigated vegetables was observed higher for Ni (0.699-0.1029 mg/kg), (0.0456-0.1040 mg/kg), (0.731-0.0994 mg/kg) in Luffa acutangula, Solanum melongena and Zea mays, respectively. The study concluded that the consumption of commonly grown vegetables in waste water zone of the study area may pose potential health threats in local population.
    Matched MeSH terms: Agriculture
  12. Fatimah, A.B., Lai, C.Y., Saari, N., Zaman, M.Z.
    MyJurnal
    Raw goat milk is recognized as one kind of nutritious food owed to its originality and
    medicinal values. This study aimed to evaluate the physico-chemical and microbiological
    qualities of locally produced raw goat milk prior any processing steps during storage. Milk
    samples passed organoleptic test and C.O.B. test were mostly (88.89 %) failed in alcohol test.
    AOAC Official method of oven drying method, Kjeldahl method and Soxhlet method were
    performed in physico-chemical analysis where results obtained were partially in lined with
    reported literature due to subjective factors of breeds, geographical areas and feeds. The locally
    produced raw goat milk’s compositions are high in water content and low in fat percentage.
    Initial total plate count, coliform count and proteolytic count tested were 3.44 log cfu/ml, 1.87
    log cfu/ml and 1.97 log cfu/ml, respectively. Storage time showed significant effect on the
    bacterial counts (p>0.05) of milk samples. Shelf-life of milk samples were kept up to 12 hours
    under ambient temperature (3.95 log cfu/ml) had not exceeded the standard limit. The shelflife
    of the milk samples were extended up to 16 days storage under refrigerated temperature
    of 4°C. The microbiological quality of the milk samples showed a significant bacteriological
    growth upon prolonged storage and high initial coliform count indicates possible poor hygienic
    practices at farm level.
    Matched MeSH terms: Agriculture
  13. Alam A, Azam M, Abdullah AB, Malik IA, Khan A, Hamzah TA, et al.
    Environ Sci Pollut Res Int, 2015 Jun;22(11):8392-404.
    PMID: 25537287 DOI: 10.1007/s11356-014-3982-5
    Environmental quality indicators are crucial for responsive and cost-effective policies. The objective of the study is to examine the relationship between environmental quality indicators and financial development in Malaysia. For this purpose, the number of environmental quality indicators has been used, i.e., air pollution measured by carbon dioxide emissions, population density per square kilometer of land area, agricultural production measured by cereal production and livestock production, and energy resources considered by energy use and fossil fuel energy consumption, which placed an impact on the financial development of the country. The study used four main financial indicators, i.e., broad money supply (M2), domestic credit provided by the financial sector (DCFS), domestic credit to the private sector (DCPC), and inflation (CPI), which each financial indicator separately estimated with the environmental quality indicators, over a period of 1975-2013. The study used the generalized method of moments (GMM) technique to minimize the simultaneity from the model. The results show that carbon dioxide emissions exert the positive correlation with the M2, DCFC, and DCPC, while there is a negative correlation with the CPI. However, these results have been evaporated from the GMM estimates, where carbon emissions have no significant relationship with any of the four financial indicators in Malaysia. The GMM results show that population density has a negative relationship with the all four financial indicators; however, in case of M2, this relationship is insignificant to explain their result. Cereal production has a positive relationship with the DCPC, while there is a negative relationship with the CPI. Livestock production exerts the positive relationship with the all four financial indicators; however, this relationship with the CPI has a more elastic relationship, while the remaining relationship is less elastic with the three financial indicators in a country. Energy resources comprise energy use and fossil fuel energy consumption, both have distinct results with the financial indicators, as energy demand have a positive and significant relationship with the DCFC, DCPC, and CPI, while fossil fuel energy consumption have a negative relationship with these three financial indicators. The results of the study are of value to both environmentalists and policy makers.
    Matched MeSH terms: Agriculture
  14. Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, et al.
    Bioengineered, 2023 Dec;14(1):2259526.
    PMID: 37747278 DOI: 10.1080/21655979.2023.2259526
    The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
    Matched MeSH terms: Agriculture
  15. Ismail SN, Ghani NSA, Ab Razak SF, Abidin RAZ, Mohd Yusof MF, Zubir MN, et al.
    Trop Life Sci Res, 2020 Oct;31(3):15-27.
    PMID: 33214853 DOI: 10.21315/tlsr2020.31.3.2
    Assessments of genetic diversity have been claimed to be significantly efficient in utilising and managing resources of genetic for breeding programme. In this study, variations in genetic were observed in 65 pineapple accessions gathered from germplasm available at Malaysian Agriculture Research and Development Institute (MARDI) located in Pontian, Johor via 15 markers of simple sequence repeat (SSR). The results showed that 59 alleles appeared to range from 2.0 to 6.0 alleles with a mean of 3.9 alleles per locus, thus displaying polymorphism for all samples at a moderate level. Furthermore, the values of polymorphic information content (PIC) had been found to range between 0.104 (TsuAC035) and 0.697 (Acom_9.9), thus averaging at the value of 0.433. In addition, the expected and the observed heterozygosity of each locus seemed to vary within the ranges of 0.033 to 0.712, and from 0.033 to 0.885, along with the average values of 0.437 and 0.511, respectively. The population structure analysis via method of delta K (ΔK), along with mean of L (K) method, revealed that individuals from the germplasm could be divided into two major clusters based on genetics (K = 2), namely Group 1 and Group 2. As such, five accessions (Yankee, SRK Chalok, SCK Giant India, SC KEW5 India and SC1 Thailand) were clustered in Group 1, while the rest were clustered in Group 2. These outcomes were also supported by the dendrogram, which had been generated through the technique of unweighted pair group with arithmetic mean (UPGMA). These analyses appear to be helpful amongst breeders to maintain and to manage their collections of germplasm. Besides, the data gathered in this study can be useful for breeders to exploit the area of genetic diversity in estimating the level of heterosis.
    Matched MeSH terms: Agriculture
  16. Mamun AA, Hayat N, Zainol NRB
    Foods, 2020 Jul 23;9(8).
    PMID: 32717851 DOI: 10.3390/foods9080974
    This study aimed to examine the effect of health consciousness, knowledge about healthy food, attitudes toward healthy food, subjective norms, and perceived behavioural control on the intention to consume healthy food, which subsequently affects the consumption of healthy food among Malaysian young adults. The current study also examined the moderating effect of perceived barriers on the association between intention to consume healthy food and the consumption of healthy food. This study adopted a cross-sectional design and collected quantitative data from 1651 Malaysian young adults (between the age of 18 and 40 years) by sharing a Google form link through social media. The findings reveal that health consciousness, knowledge about healthy food, attitude toward healthy food, subjective norms, and perceived behavioural control had a significant positive effect on the intention to consume healthy food. Findings also show that the intention to consume healthy food has a significant positive effect on the consumption of healthy food among Malaysian young adults. Furthermore, the findings reveal the positive and significant mediating effect of the intention to consume healthy food and the significant moderating effect of perceived barriers on the association between the intention to consume healthy food and the consumption of healthy food. The multi-group analysis revealed that the effect of perceived barriers on the consumption of healthy food and the moderating effect of perceived barriers were significantly higher among urban respondents. Health and agriculture policymakers should focus on the attributes of healthy eating practices and their health benefits to promote the mass adoption of healthy food among Malaysian young adults.
    Matched MeSH terms: Agriculture
  17. Yeoh KH, Shafie SA, Al-Attab KA, Zainal ZA
    Bioresour Technol, 2018 Oct;265:365-371.
    PMID: 29925052 DOI: 10.1016/j.biortech.2018.06.024
    In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content.
    Matched MeSH terms: Agriculture*
  18. Karim AA, Tie AP, Manan DMA, Zaidul ISM
    Compr Rev Food Sci Food Saf, 2008 Jul;7(3):215-228.
    PMID: 33467803 DOI: 10.1111/j.1541-4337.2008.00042.x
      The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under- or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.
    Matched MeSH terms: Agriculture
  19. Mohd Ridzuan J, Aziah BD, Zahiruddin WM
    Int J Occup Environ Med, 2016 07;7(3):156-63.
    PMID: 27393322 DOI: 10.15171/ijoem.2016.699
    BACKGROUND: Leptospirosis is a zoonotic disease that is recognized as a re-emerging global public health issue, especially in tropical and subtropical countries. Malaysia, for example, has increasingly registered leptospirosis cases, outbreaks, and fatalities over the past decade. One of the major industries in the country is the palm oil sector, which employs numerous agricultural workers. These laborers are at a particularly high risk of contracting the disease.

    OBJECTIVE: To identify the work environment-related risk factors for leptospirosis infection among oil palm plantation workers in Malaysia.

    METHODS: A cross-sectional study involving 350 workers was conducted. The participants were interviewed and administered a microscopic agglutination test. Seropositivity was determined using a cut-off titer of ≥1:100.

    RESULTS: 100 of 350 workers tested positive for leptospiral antibodies, hence, a seroprevalence of 28.6% (95% CI 23.8% to 33.3%). The workplace environment-related risk factors significantly associated with seropositive leptospirosis were the presence of cows in plantations (adjusted OR 4.78, 95% CI 2.76 to 8.26) and the presence of a landfill in plantations (adjusted OR 2.04, 95% CI 1.22 to 3.40).

    CONCLUSION: Preventing leptospirosis incidence among oil palm plantation workers necessitates changes in policy on work environments. Identifying modifiable factors may also contribute to the reduction of the infection.

    Matched MeSH terms: Agriculture
  20. Kanadasan J, Fauzi AFA, Razak HA, Selliah P, Subramaniam V, Yusoff S
    Materials (Basel), 2015 Sep 22;8(9):6508-6530.
    PMID: 28793579 DOI: 10.3390/ma8095319
    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.
    Matched MeSH terms: Agriculture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links