Displaying publications 1 - 20 of 1182 in total

Abstract:
Sort:
  1. Gény C, Abou Samra A, Retailleau P, Iorga BI, Nedev H, Awang K, et al.
    J Nat Prod, 2017 12 22;80(12):3179-3185.
    PMID: 29160716 DOI: 10.1021/acs.jnatprod.7b00494
    Four new compounds, (+)- and (-)-ecarlottone (1), (±)-fislatifolione (5), (±)-isofislatifolione (6), and (±)-fislatifolic acid (7), and the known desmethoxyyangonin (2), didymocarpin-A (3), and dehydrodidymocarpin-A (4) were isolated from the stem bark of Fissistigma latifolium, by means of bioassay-guided purification using an in vitro affinity displacement assay based on the modulation of Bcl-xL/Bak and Mcl-1/Bid interactions. The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds (+)-1 and (-)-1 were assigned by comparison of experimental and computed ECD spectra. (-)-Ecarlottone 1 exhibited a potent antagonistic activity on both protein-protein associations with Ki values of 4.8 μM for Bcl-xL/Bak and 2.4 μM for Mcl-1/Bid.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  2. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  3. In LL, Arshad NM, Ibrahim H, Azmi MN, Awang K, Nagoor NH
    PMID: 23043547 DOI: 10.1186/1472-6882-12-179
    Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/therapeutic use
  4. Hasima N, Aun LI, Azmi MN, Aziz AN, Thirthagiri E, Ibrahim H, et al.
    Phytomedicine, 2010 Oct;17(12):935-9.
    PMID: 20729047 DOI: 10.1016/j.phymed.2010.03.011
    Medicinal plants containing active natural compounds have been used as an alternative treatment for cancer patients in many parts of the world especially in Asia (Itharat et al. 2004). In this report, we describe the cytotoxic and apoptotic properties of 1'S-1'-acetoxyeugenol acetate (AEA), an analogue of 1'S-1'-acetoxychavicol acetate (ACA), isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) on human breast cancer cells. Data from MTT cell viability assays indicated that AEA induced both time- and dose-dependent cytotoxicity with an IC(50) value of 14.0 μM within 36 h of treatment on MCF-7 cells, but not in HMEC normal control cells. Both annexin V-FITC/PI flow cytometric analysis and DNA fragmentation assays confirmed that AEA induced cell death via apoptosis. AEA was also found to induce cell cycle arrest in MCF-7 cells at the G(0)/G(1) phase with no adverse cell cycle arrest effects on HMEC normal control cells. It was concluded that AEA isolated from the Malaysian tropical ginger represents a potential chemotherapeutic agent against human breast cancer cells with higher cytotoxicity potency than its analogue, ACA.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/therapeutic use*
  5. Lay MM, Karsani SA, Malek SN
    Int J Mol Sci, 2014 Jan 02;15(1):468-83.
    PMID: 24451128 DOI: 10.3390/ijms15010468
    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  6. Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, et al.
    Drug Des Devel Ther, 2017;11:3045-3063.
    PMID: 29123378 DOI: 10.2147/DDDT.S144415
    The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/toxicity
  7. Phan CS, Kamada T, Kobayashi K, Hamada T, Vairappan CS
    Nat Prod Res, 2018 Jan;32(2):202-207.
    PMID: 28691521 DOI: 10.1080/14786419.2017.1346638
    A new xenicane diterpenoid, 15-deoxy-isoxeniolide-A (1) along with four known compounds 9-deoxy-isoxeniolide-A (2), isoxeniolide-A (3), xeniolide-A (4) and coraxeniolide-B (5) were isolated from the Bornean soft coral Xenia sp. The structures of these metabolites were elucidated on the basis of spectral analysis, NMR and HRESIMS. Compound 5 showed cytotoxic activity against ATL cell line, S1T.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  8. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(13):1080-1092.
    PMID: 30306865 DOI: 10.2174/1389557518666181009151008
    BACKGROUND: Increased rate of mortality due to the development of resistance to currently available antimicrobial and anticancer agents initiated the need to develop new chemical entities for the treatment of microbial infections and cancer.

    OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.

    METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.

    RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.

    CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  9. Daud SM, Yaacob NS, Fauzi AN
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):59-65.
    PMID: 33576213 DOI: 10.31557/APJCP.2021.22.S1.59
    OBJECTIVE: The persistent activation of aerobic glycolysis in cancer cells results in accumulation of lactate and other metabolic intermediates that contribute to tumorigenesis. Increased glycolysis is frequently dysregulated in triple-negative breast cancer (TNBC), which promotes tumor growth and immune escape. This study was conducted to investigate the effect of 2-methoxy-1, 4-naphthoquinone (MNQ), compound extracted from Impatiens balsamina on glycolytic activities in human breast adenocarcinoma, MDA-MB-231 cells.

    METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt).

    RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway.

    CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.

    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  10. Liew K, Yong PV, Lim YM, Navaratnam V, Ho AS
    Toxicol In Vitro, 2014 Apr;28(3):335-9.
    PMID: 24291160 DOI: 10.1016/j.tiv.2013.11.008
    Metastasis contributes to the escalating mortality rate among cancer patients worldwide. The search for novel and more effective anti-metastatic agent is crucial owing to the lack of anticancer drugs that can successfully combat metastasis. Hence, this study aims to examine the effects of 2-Methoxy-1,4-Naphthoquinone (MNQ) towards the metastasis of MDA-MB-231 cells. In invasion assays, the number of cells permeating across a Matrigel barrier was found to be decreased in a dose-dependent manner upon treatment with MNQ (0-7.5 μM). In wound-healing migration assays, MNQ exhibited dose-dependent inhibition of cell migration in which significant reduction in the zone of closure was observed as compared to untreated controls. Furthermore, the proteolytic activity of a pivotal metastatic mediator, matrix metalloproteinase-9 (MMP-9) was also downregulated by MNQ as determined by gelatin zymography. This study reports for the first time, the ability of MNQ to inhibit the invasion and migration characteristics of a highly metastatic MDA-MB-231 cancer cell line.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  11. Abu N, Akhtar MN, Ho WY, Yeap SK, Alitheen NB
    Molecules, 2013 Aug 27;18(9):10367-77.
    PMID: 23985955 DOI: 10.3390/molecules180910367
    Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology*
  12. Farghadani R, Haerian BS, Ebrahim NA, Muniandy S
    Asian Pac J Cancer Prev, 2016;17(7):3139-45.
    PMID: 27509942
    Cancer is the leading cause of morbidity and mortality worldwide, characterized by irregular cell growth. Cytotoxicity or killing tumor cells that divide rapidly is the basic function of chemotherapeutic drugs. However, these agents can damage normal dividing cells, leading to adverse effects in the body. In view of great advances in cancer therapy, which are increasingly reported each year, we quantitatively and qualitatively evaluated the papers published between 1981 and December 2015, with a closer look at the highly cited papers (HCPs), for a better understanding of literature related to cytotoxicity in cancer therapy. Online documents in the Web of Science (WOS) database were analyzed based on the publication year, the number of times they were cited, research area, source, language, document type, countries, organizationenhanced and funding agencies. A total of 3,473 publications relevant to the target key words were found in the WOS database over 35 years and 86% of them (n=2,993) were published between 20002015. These papers had been cited 54,330 times without self citation from 1981 to 2015. Of the 3,473 publications, 17 (3,557citations) were the most frequently cited ones between 2005 and 2015. The topmost HCP was about generating a comprehensive preclinical database (CCLE) with 825 (23.2%) citations. One third of the remaining HCPs had focused on drug discovery through improving conventional therapeutic agents such as metformin and ginseng. Another 33% of the HCPs concerned engineered nanoparticles (NPs) such as polyamidoamine (PAMAM) dendritic polymers, PTX/SPIOloaded PLGAs and cell derived NPs to increase drug effectiveness and decrease drug toxicity in cancer therapy. The remaining HCPs reported novel factors such as miR205, Nrf2 and p27 suggesting their interference with development of cancer in targeted cancer therapy. In conclusion, analysis of 35year publications and HCPs on cytotoxicity in cancer in the present report provides opportunities for a better understanding the extent of topics published and may help future research in this area.
    Matched MeSH terms: Antineoplastic Agents/adverse effects*; Antineoplastic Agents/therapeutic use*
  13. Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2019 Dec;13(1):60.
    PMID: 31384808 DOI: 10.1186/s13065-019-0575-x
    In order to overcome the challenges of microbial resistance as well as to improve the effectiveness and selectivity of chemotherapeutic agents against cancer, a novel series of 4-(4-bromophenyl)-thiazol-2-amine derivatives was synthesized and its molecular structures were confirmed by physicochemical and spectral characteristics. The synthesized compounds were further evaluated for their in vitro antimicrobial activity using turbidimetric method and anticancer activity against oestrogen receptor positive human breast adenocarcinoma cancer cell line (MCF7) by Sulforhodamine B (SRB) assay. The antimicrobial activity results revealed that compound p2, p3, p4 and p6 exhibited promising antimicrobial activity that are comparable to standard norfloxacin (antibacterial) and fluconazole (antifungal). Anticancer screening results demonstrated that compound p2 was found to be the most active one against cancer cell line when compared to the rest of the compounds and comparable to the standard drug (5-fluorouracil). The molecular docking study demonstrated that compounds, p2, p3, p4 and p6 displayed good docking score within binding pocket of the selected PDB ID (1JIJ, 4WMZ and 3ERT) and showed promising ADME properties.
    Matched MeSH terms: Antineoplastic Agents
  14. Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS, Pichika MR, et al.
    Cancer Lett, 2013 Aug 9;336(1):127-39.
    PMID: 23612072 DOI: 10.1016/j.canlet.2013.04.014
    6-Shogaol has been shown to possess many antitumor properties including inhibition of cancer cell growth, inhibition of cancer metastasis, induction of apoptosis in cancer cells and induction of cancer cell differentiation. Despite its prominent antitumor effects, the direct molecular target of 6-shogaol has remained elusive. To identify the direct targets of 6-shogaol, a comprehensive antitumor profile of 6-shogaol (NSC752389) was tested in the NCI-60 cell line in an in vitro screen. The results show that 6-shogaol is COMPARE negative suggesting that it functions via a mechanism of action distinct from existing classes of therapeutic agents. Further analysis using microarray gene profiling and Connectivity Map analysis showed that MCF-7 cells treated with 6-shogaol display gene expression signatures characteristic of peroxisome proliferator activated receptor γ (PPARγ) agonists, suggesting that 6-shogaol may activate the PPARγ signaling pathway for its antitumor effects. Indeed, treatment of MCF-7 and HT29 cells with 6-shogaol induced PPARγ transcriptional activity, suppressed NFκB activity, and induced apoptosis in breast and colon cancer cells in a PPARγ-dependent manner. Furthermore, 6-shogaol is capable of binding to PPARγ with a binding affinity comparable to 15-delta prostaglandin J2, a natural ligand for PPARγ. Together, our findings suggest that the antitumor effects of 6-shogaol are mediated through activation of PPARγ and imply that activation of PPARγ might be beneficial for breast and colon cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  15. Chan XH, Sabaratnam V, Abdullah N, Phan CW
    Int J Med Mushrooms, 2020;22(6):521-534.
    PMID: 32865894 DOI: 10.1615/IntJMedMushrooms.2020035031
    The research field of culinary and medicinal mushrooms has been well developed since the first relevant publication in 1966. However, to date, there has been no bibliometric analysis published specifically for this field. This study aimed to assess the most influential publications as well as the research trends and important drivers in the field of culinary and medicinal mushrooms. Scopus was used to identify relevant publications and the 1000 most-cited publications were identified and analyzed. Bradford's law of scattering shows one-third of the papers were published in 14 core journals, with a total of 102 papers published in International Journal of Medicinal Mushrooms. There is an insignificant negative correlation (Pearson's correlation coefficient, r = -0.355) between the journal impact factor and publication count. VOSviewer was used to generate a country network. China represents Asia's research center in this field, having contributed 20% of the 1000 most-cited publications. A term map was also created to visualize the co-occurrence of key terms in the domain. Different biological activities such as antioxidant and antitumor properties of mushrooms appeared to be a recurring topic in this field. Wasser (2003) showed the highest citation count (n = 1282), which is almost double the second most-cited publication (n = 611). There is a weak positive correlation (r = +0.237) between the years since publication and total citation count. In conclusion, this bibliometric study will assist researchers to comprehend the current status of the research on culinary and medicinal mushrooms, and to visualize the future impact of such an important field.
    Matched MeSH terms: Antineoplastic Agents/pharmacology; Antineoplastic Agents/therapeutic use
  16. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  17. Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, et al.
    Molecules, 2020 Sep 22;25(18).
    PMID: 32971740 DOI: 10.3390/molecules25184332
    A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5-30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  18. Viswanathan G, Hsu YH, Voon SH, Imae T, Siriviriyanun A, Lee HB, et al.
    Macromol Biosci, 2016 06;16(6):882-95.
    PMID: 26900760 DOI: 10.1002/mabi.201500435
    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage; Antineoplastic Agents/chemistry
  19. Khoo LW, Audrey Kow S, Lee MT, Tan CP, Shaari K, Tham CL, et al.
    PMID: 30105077 DOI: 10.1155/2018/9276260
    Clinacanthus nutans (Burm.f.) Lindau (Acanthaceae), commonly known as Sabah snake grass, is a vegetable and a well-known herb that is considered an alternative medicine for insect bites, skin rashes, herpes infection, inflammation, and cancer and for health benefits. Current review aims to provide a well-tabulated repository of the phytochemical screening, identification and quantification, and the pharmacological information of C. nutans according to the experimental design and the plant preparation methods which make it outstanding compared to existing reviews. This review has documented valuable data obtained from all accessible library databases and electronic searches. For the first time we analyzed the presence of flavonoids, triterpenoids, steroids, phytosterols, and glycosides in C. nutans based on the results from phytochemical screening which are then further confirmed by conventional phytochemical isolation methods and advanced spectroscopic techniques. Phytochemical quantification further illustrated that C. nutans is a good source of phenolics and flavonoids. Pharmacological studies on C. nutans revealed that its polar extract could be a promising anti-inflammation, antiviral, anticancer, immune and neuromodulating, and plasmid DNA protective agent; that its semipolar extract could be a promising antiviral, anticancer, and wound healing agent; and that its nonpolar extract could be an excellent anticancer agent.
    Matched MeSH terms: Antineoplastic Agents
  20. Seyed MA, Jantan I, Bukhari SN, Vijayaraghavan K
    J Agric Food Chem, 2016 Feb 3;64(4):725-37.
    PMID: 26758628 DOI: 10.1021/acs.jafc.5b05993
    Cancer is a diverse class of diseases characterized by uncontrolled cell growth that constitutes the greatest cause of mortality and morbidity worldwide. Despite steady progress, the treatment modalities of cancer are still insufficient. Several new concepts have emerged for therapeutic intervention in malignant diseases with the goal of identifying specific targets and overcoming resistance against current cytotoxic therapies. Many studies have reported the remarkable and significant properties of dietary plant polyphenols such as curcumin, resveratrol, flavopiridol, indirubin, magnolol, piceatannol, parthenolide, epigallocatechin gallate, and cucurbitacin as anticancer agents known for their pleiotropic effects on cancer, immune cells, and inflammation. Piceatannol, an analogue and metabolite of resveratrol, is a natural stilbene commonly found in grape skins and wine. Compared to resveratrol, this molecule exhibits superior bioactivities as an inhibitor of COX-1/2 and the CSN-associated kinase. Piceatannol is thought to be a potent natural compound with many therapeutic effects, such as the prevention of hypercholesterolemia, arrhythmia, atherosclerosis, angiogenesis, and cardiovascular diseases. It also demonstrates vasorelaxation, antioxidant, and anticancer activities. This comprehensive review summarizes the current data regarding the mechanisms of action of piceatannol, its chemopreventive properties, and its possible therapeutic potential against various types of human cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/metabolism; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links