Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Yoon LW, Ngoh GC, Chua AS
    Enzyme Microb Technol, 2013 Sep 10;53(4):250-6.
    PMID: 23931690 DOI: 10.1016/j.enzmictec.2013.05.005
    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
    Matched MeSH terms: Bioengineering
  2. Wijesekara P, Ng WH, Feng M, Ren X
    Curr Opin Organ Transplant, 2018 12;23(6):657-663.
    PMID: 30234735 DOI: 10.1097/MOT.0000000000000577
    PURPOSE OF REVIEW: Engineering vasculature that meets an organ's specific physiology and function is a fundamental step in organ bioengineering. In this article, we review approaches for engineering functional vasculature for organ bioengineering, with an emphasis on the engineering of organ-specific endothelium and vasculature.

    RECENT FINDINGS: Recent advances in hydrogel-based engineering of vascularized organ bud enable vascular regeneration in self-assembled cellular niche containing parenchymal and stromal cells. The emerging technology of whole-organ decellularization provides scaffold materials that serve as extracellular niche guiding vascular regeneration to recapitulate native organ's vascular anatomy. Increasing morphological and molecular evidences suggest endothelial heterogeneity across different organs and across different vascular compartments within an organ. Deriving organ-specific endothelium from pluripotent stem cells has been shown to be possible by combining endothelial induction with parenchymal differentiation.

    SUMMARY: Engineering organ-specific vasculature requires the combination of organ-specific endothelium with its unique cellular and extracellular niches. Future investigations are required to further delineate the mechanisms for induction and maintenance of organ-specific vascular phenotypes, and how to incorporate these mechanisms to engineering organ-specific vasculature.

    Matched MeSH terms: Bioengineering/methods*
  3. Tan AK, Pall S
    Med J Malaysia, 2011 Oct;66(4):284-5.
    PMID: 22299542 MyJurnal
    Matched MeSH terms: Bioengineering*
  4. Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, et al.
    Bioengineered, 2023 Dec;14(1):2252228.
    PMID: 37661811 DOI: 10.1080/21655979.2023.2252228
    Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
    Matched MeSH terms: Bioengineering
  5. Show PL, Chew KW, Chang JS
    Bioengineered, 2020 12;11(1):188.
    PMID: 32077364 DOI: 10.1080/21655979.2020.1729546
    Matched MeSH terms: Bioengineering/methods*
  6. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN
    Data Brief, 2018 Apr;17:1245-1252.
    PMID: 29845096 DOI: 10.1016/j.dib.2018.02.053
    The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm) to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose) based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials). Moreover, the chemical elements of nanobiofilm like K+, CO3--, Cl-, Na+ showed standard data using the EN (166).
    Matched MeSH terms: Bioengineering
  7. Sharif Hossain ABM, Uddin MM, Veettil VN, Fawzi M
    Data Brief, 2018 Apr;17:162-168.
    PMID: 29877503 DOI: 10.1016/j.dib.2017.12.046
    The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials) standard. In addition to that data on the chemical element test like K+,


    CO


    3


    -
    -


    , Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166)) standardization. Therefore, it can be concluded that both organic (cellulose and starch) based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries.
    Matched MeSH terms: Bioengineering
  8. Qi H, Huang G, Han Y, Zhang X, Li Y, Pingguan-Murphy B, et al.
    Tissue Eng Part B Rev, 2015 Jun;21(3):288-97.
    PMID: 25547514 DOI: 10.1089/ten.TEB.2014.0494
    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
    Matched MeSH terms: Bioengineering/methods
  9. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
    Matched MeSH terms: Bioengineering/methods*
  10. Normaniza Osman, Mohamad Nordin Abdullah, Che Hassandi Abdullah
    Sains Malaysiana, 2011;40:1123-1127.
    A bioengineering technique is gradually being used as an alternative for slope stabilisation design. The effect of vegetation on soil strength, particularly in terms of root reinforcement aspects has therefore become a major interest. However, there is a lack of documentation on the root mechanical properties available especially in Malaysia. In this study, both pull-out and tensile strength of two tropical trees namely Leucaena leucocephala and Acacia mangium were investigated on different stem sizes. L. leucocephala performs the higher pullout strength than A. mangium. The results also show that pullout resistance is much affected by the root than the shoot profiles. In terms of tensile strength, the tensile strength decreases with increasing root diameter, implying the finer root diameter contribute to the higher tensile strength. In both parameters, L. leucocephala exhibits the highest value. The study suggests that L. leucocephala has an added value as a good potential slope plant for slope stabilization work as it exhibits outstanding root mechanical properties. Interestingly, the results also showed that the pullout force was much affected by the tensile strength. It can be concluded that some root and shoot properties do have a great impact on root mechanical properties such as tensile and pullout strengths.
    Matched MeSH terms: Bioengineering
  11. Mustapha Kamil Y, Al-Rekabi SH, Yaacob MH, Syahir A, Chee HY, Mahdi MA, et al.
    Sci Rep, 2019 09 17;9(1):13483.
    PMID: 31530893 DOI: 10.1038/s41598-019-49891-7
    The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
    Matched MeSH terms: Bioengineering
  12. Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S
    Appl Microbiol Biotechnol, 2018 Jul;102(14):5811-5826.
    PMID: 29749565 DOI: 10.1007/s00253-018-9063-9
    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
    Matched MeSH terms: Bioengineering
  13. Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, et al.
    Ann Biomed Eng, 2023 Nov;51(11):2365-2383.
    PMID: 37466879 DOI: 10.1007/s10439-023-03322-x
    Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
    Matched MeSH terms: Bioengineering*
  14. Mohamed ME, Pahirulzaman KA, Lazarus CM
    Mol Biotechnol, 2016 Mar;58(3):172-8.
    PMID: 26718544 DOI: 10.1007/s12033-015-9911-0
    Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.
    Matched MeSH terms: Bioengineering
  15. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY
    Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
    PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006
    Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.
    Matched MeSH terms: Bioengineering*
  16. Majeed S, Aripin FHB, Shoeb NSB, Danish M, Ibrahim MNM, Hashim R
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:254-263.
    PMID: 31146998 DOI: 10.1016/j.msec.2019.04.041
    The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 μg/mL, intestinal colon cancer HCT- 116 60 μg/mL, and bone cancer osteosarcoma MG-63 cell line80 μg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 μg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells.
    Matched MeSH terms: Bioengineering*
  17. Lim MN, Umapathy T, Baharuddin PJ, Zubaidah Z
    Med J Malaysia, 2011 Oct;66(4):335-41.
    PMID: 22299553 MyJurnal
    Transplantation of cultivated limbal epithelium on substrates such as amniotic membrane is an established treatment for severe ocular surface disease with limbal stem cell deficiency. In this study, we adapted an established method to generate sheets of limbal epithelium on amniotic membrane and characterized the cells contained in these sheets and tested them for safety with regard to microbial contamination. Human limbal biopsies were cultivated on denuded amniotic membranes. After three weeks of culture, the phenotypes of cultivated cells were analyzed by immunohistochemistry and real-time RT-PCR for the expression of a panel of specific markers. Cultivated limbal epithelial cell sheets were also analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Sterility tests and mycoplasma assays were conducted for the safety of product. A confluent layer of polygonal cells was formed in 2 weeks and 1-3 stratified layer of cells were observed after three weeks of culture. Cultivated cells were positive for p63, K3, K19, and involucrin but negative for K14, integrin alpha9 and ABCG2 when analyzed by immunohistochemistry. Expression of molecular markers was detectable with real-time RT-PCR. SEM showed multilayer of flat squamous polygonal epithelial cells. Desmosomal and hemidesmosomal attachments were evident. Our study showed that cultivated limbal epithelium consists of limbal progenitors as well as differentiated corneal epithelial cells. SEM and TEM analysis showed cultivated cells demonstrated typical features of corneal epithelium. The risk of contamination is low and can be prevented by culturing the cells in a clean room facility complying to Good Manufacturing Practice standard.
    Matched MeSH terms: Bioengineering*
  18. Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS
    Small, 2018 Nov;14(44):e1802086.
    PMID: 30191658 DOI: 10.1002/smll.201802086
    The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
    Matched MeSH terms: Bioengineering
  19. Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, et al.
    Chemosphere, 2023 Oct;339:139699.
    PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699
    Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
    Matched MeSH terms: Bioengineering
  20. Jeong J
    Sensors (Basel), 2011;11(7):6816-41.
    PMID: 22163987 DOI: 10.3390/s110706816
    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.
    Matched MeSH terms: Bioengineering/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links