Displaying publications 1 - 20 of 357 in total

Abstract:
Sort:
  1. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H
    Cancer Sci, 2013 Nov;104(11):1461-7.
    PMID: 23910095 DOI: 10.1111/cas.12246
    Dysregulation of p27(Kip1) due to proteolysis that involves the ubiquitin ligase (SCF) complex with S-phase kinase-associated protein 2 (Skp2) as the substrate-recognition component (SCF(Skp2)) frequently results in tumorigenesis. In this report, we developed a high-throughput screening system to identify small-molecule inhibitors of p27(Kip1) degradation. This system was established by tagging Skp2 with fluorescent monomeric Azami Green (mAG) and CDK subunit 1 (Cks1) (mAGSkp2-Cks1) to bind to p27(Kip1) phosphopeptides. We identified two compounds that inhibited the interaction between mAGSkp2-Cks1 and p27(Kip1): linichlorin A and gentian violet. Further studies have shown that the compounds inhibit the ubiquitination of p27(Kip1) in vitro as well as p27(Kip1) degradation in HeLa cells. Notably, both compounds exhibited preferential antiproliferative activity against HeLa and tsFT210 cells compared with NIH3T3 cells and delayed the G1 phase progression in tsFT210 cells. Our approach indicates a potential strategy for restoring p27(Kip1) levels in human cancers.
    Matched MeSH terms: Cell Cycle Checkpoints
  2. Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S
    J Physiol Biochem, 2017 Feb;73(1):59-65.
    PMID: 27743340 DOI: 10.1007/s13105-016-0524-2
    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p cell cycle regulation during cellular aging. In conclusion, senescent HDFs showed change in biological process specifically in cell cycle regulation with elevated expression of genes and proteins which may contribute to cell cycle arrest. Palm γ-tocotrienol may delay cellular senescence of HDFs by regulating cell cycle through downregulation of p16INK4a and hypophosphorylated-pRb and cyclin D1 protein expressions.
    Matched MeSH terms: Cell Cycle
  3. Gan CP, Sam KK, Yee PS, Zainal NS, Lee BKB, Abdul Rahman ZA, et al.
    Cell Oncol (Dordr), 2019 Aug;42(4):477-490.
    PMID: 30949979 DOI: 10.1007/s13402-019-00437-z
    PURPOSE: Oral squamous cell carcinoma (OSCC) is a challenging disease to treat. Up to 50% of OSCC patients with advanced disease develop recurrences. Elucidation of key molecular mechanisms underlying OSCC development may provide opportunities to target specific genes and, thus, to improve patient survival. In this study, we examined the expression and functional role of interferon transmembrane protein 3 (IFITM3) in OSCC development.

    METHODS: The expression of IFITM3 in OSCC and normal oral mucosal tissues was assessed by qRT-PCR and immunohistochemistry. The role of IFITM3 in driving OSCC cell proliferation and survival was examined using siRNA-mediated gene knockdown, and the role of IFITM3 in driving cell cycle regulators was examined using Western blotting.

    RESULTS: We found that IFITM3 is overexpressed in more than 79% of primary OSCCs. We also found that IFITM3 knockdown led to impaired OSCC cell growth through inhibition of cell proliferation, induction of cell cycle arrest, senescence and apoptosis. In addition, we found that IFITM3 knockdown led to reduced expressions of CCND1 and CDK4 and reduced RB phosphorylation, leading to inhibition of OSCC cell growth. This information may be instrumental for the design of novel targeted therapeutic strategies.

    CONCLUSIONS: From our data we conclude that IFITM3 is overexpressed in OSCC and may regulate the CCND1-CDK4/6-pRB axis to mediate OSCC cell growth.

    Matched MeSH terms: Cell Cycle Checkpoints
  4. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Cell Cycle/drug effects
  5. Wong CC, Sagineedu SR, Sumon SH, Sidik SM, Phillips R, Lajis NH, et al.
    Environ Toxicol Pharmacol, 2014 Sep;38(2):489-501.
    PMID: 25168151 DOI: 10.1016/j.etap.2014.07.016
    Andrographolide (AGP) is the main bioactive constituent isolated from the traditional medicinal, Andrographis paniculata which contributes towards its various biological activities, including anticancer property. In this study, a series of new AGP derivatives were semi-synthesised and screened against the NCI in vitro 60 cell lines. From the screening results, we had identified SRS07 as the most potent AGP derivative, against breast and colon cancer cell lines. Subsequently, SRS07 was tested for its capability to induce cell cycle arrest and apoptosis in MCF-7 and HCT116 cancer cells. SRS07 effectively induced G1 cell cycle arrest in both cell lines and ultimately apoptosis by inducing DNA fragmentation in HCT116 cells. The apoptotic cell death induced by SRS07 was confirmed via FITC Annexin-V double staining. Western blot analysis of SRS07-treated HCT116 cells revealed that the compound induced apoptosis be activating caspase 8 which in turn cleaved Bid to t-Bid to initiate cell death cascade. Prediction of the possible mode of action of SRS07 by utilising NCI COMPARE analysis failed to reveal a distinct mechanism category. Hence, it is speculated that SRS07 possesses novel mechanism of action. In conclusion, SRS07 demonstrated superior in vitro anticancer profiles and emerged as a potential lead anticancer candidate.
    Matched MeSH terms: Cell Cycle/drug effects
  6. Zorofchian Moghadamtousi S, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Abdul Kadir H
    J Ethnopharmacol, 2014 Oct 28;156:277-89.
    PMID: 25195082 DOI: 10.1016/j.jep.2014.08.011
    ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata known as "the cancer killer" has been widely used in the traditional medicine for the treatment of cancer and tumors. The purpose of this study is to investigate the anticancer properties of ethyl acetate extract of Annona muricata leaves (EEAM) on HT-29 and HCT-116 colon cancer cells and the underlying mechanisms.
    MATERIALS AND METHODS: The effect of EEAM on the cell proliferation of HT-29 and HCT-116 cells was analyzed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay. High content screening system (HCS) was applied to investigate the cell membrane permeability, mitochondrial membrane potential (MMP), nuclear condensation and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. Flow cytometric analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. The protein expression of Bax and Bcl-2 was determined using immunofluorescence analysis. In addition, the potential of EEAM to suppress the migration and invasion of colon cancer cells was also examined.
    RESULTS: EEAM exerted significant cytotoxic effects on HCT-116 and HT-29 cells as determined by MTT and LDH assays. After 24 h treatment, EEAM exhibited the IC₅₀ value of 11.43 ± 1.87 µg/ml and 8.98 ± 1.24 µg/ml against HT-29 and HCT-116 cells, respectively. Flow cytometric analysis demonstrated the cell cycle arrest at G1 phase and phosphatidylserine externalization confirming the induction of apoptosis. EEAM treatment caused excessive accumulation of ROS followed by disruption of MMP, cytochrome c leakage and activation of the initiator and executioner caspases in both colon cancer cells. Immunofluorescence analysis depicted the up-regulation of Bax and down-regulation of Bcl-2 proteins while treated with EEAM. Furthermore, EEAM conspicuously blocked the migration and invasion of HT-29 and HCT-116 cells.
    CONCLUSIONS: These findings provide a scientific basis for the use of A. muricata leaves in the treatment of cancer, although further in vivo studies are still required.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects*
  7. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: M Phase Cell Cycle Checkpoints/drug effects*
  8. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  9. Bashanfer SAA, Saleem M, Heidenreich O, Moses EJ, Yusoff NM
    Oncol Rep, 2019 Mar;41(3):2027-2040.
    PMID: 30569130 DOI: 10.3892/or.2018.6926
    The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/genetics
  10. Singh P, Charles S, Madhavan T, Munusamy-Ramanujam G, Saraswathi NT, Arasu MV, et al.
    Eur J Pharmacol, 2021 Jan 15;891:173697.
    PMID: 33144068 DOI: 10.1016/j.ejphar.2020.173697
    We investigated the role of protein arginine methylation (PAM) in estrogen receptor (ER)-positive breast cancer cells through pharmacological intervention. Tamoxifen (TAM) or adenosine dialdehyde (ADOX), independently, triggered cell cycle arrest and down-regulated PAM, as reduced protein arginine methyltransferase1 (PRMT1) mRNA and asymmetric dimethylarginine (ADMA) levels. Synergistic effect of these compounds elicited potent anti-cancer effect. However, reduction in ADMA was not proportionate with the compound-induced down-regulation of PRMT1 mRNA. We hypothesized that the disproportionate effect is due to the influence of the compounds on other methyltransferases, which catalyze the arginine dimethylation reaction and the diversity in the degree of drug-protein interaction among these methyltransferases. In silico analyses revealed that independently, ADOX or TAM, binds with phosphatidylethanolamine-methyltransferase (PEMT) or betaine homocysteine-methyl transferase (BHMT); and that the binding affinity of ADOX with PEMT or BHMT is prominent than TAM. These observations suggest that in breast cancer, synergistic effect of ADOX + TAM elicits impressive protective function by regulating PAM; and plausibly, restoration of normal enzyme activities of methyltransferases catalyzing arginine dimethylation could have clinical benefits.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  11. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  12. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  13. Salim LZ, Othman R, Abdulla MA, Al-Jashamy K, Ali HM, Hassandarvish P, et al.
    PLoS One, 2014;9(12):e115340.
    PMID: 25531768 DOI: 10.1371/journal.pone.0115340
    BACKGROUND: Thymoquinone is an active ingredient isolated from Nigella sativa (Black Seed). This study aimed to evaluate the in vitro and in vivo anti-leukemic effects of thymoquinone on WEHI-3 cells.

    METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of thymoquinone was assessed using an MTT assay, while the inhibitory effect of thymoquinone on murine WEHI-3 cell growth was due to the induction of apoptosis, as evidenced by chromatin condensation dye, Hoechst 33342 and acridine orange/propidium iodide fluorescent staining. In addition, Annexin V staining for early apoptosis was performed using flowcytometric analysis. Apoptosis was found to be associated with the cell cycle arrest at the S phase. Expression of Bax, Bcl2 and HSP 70 proteins were observed by western blotting. The effects of thymoquinone on BALB/c mice injected with WEHI-3 cells were indicated by the decrease in the body, spleen and liver weights of the animal, as compared to the control.

    CONCLUSION: Thymoquinone promoted natural killer cell activities. This compound showed high toxicity against WEHI-3 cell line which was confirmed by an increase of the early apoptosis, followed by up-regulation of the anti-apoptotic protein, Bcl2, and down-regulation of the apoptotic protein, Bax. On the other hand, high reduction of the spleen and liver weight, and significant histopathology study of spleen and liver confirmed that thymoquinone inhibited WEHI-3 growth in the BALB/c mice. Results from this study highlight the potential of thymoquinone to be developed as an anti-leukemic agent.

    Matched MeSH terms: S Phase Cell Cycle Checkpoints/drug effects
  14. Tan HK, Moad AI, Tan ML
    Asian Pac J Cancer Prev, 2014;15(16):6463-75.
    PMID: 25169472
    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
    Matched MeSH terms: Cell Cycle
  15. Khan S, Zakariah M, Palaniappan S
    Tumour Biol., 2016 Aug;37(8):10805-13.
    PMID: 26874727 DOI: 10.1007/s13277-016-4970-9
    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
    Matched MeSH terms: Cell Cycle Checkpoints
  16. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
    Matched MeSH terms: Cell Cycle Checkpoints
  17. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al.
    Front Pharmacol, 2019;10:820.
    PMID: 31402861 DOI: 10.3389/fphar.2019.00820
    Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (C16H12O4), which originates mainly from red clovers and the Chinese herb Astragalus membranaceus. The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties in vitro and in vivo by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy.
    Matched MeSH terms: Cell Cycle Checkpoints
  18. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Cell Cycle Checkpoints
  19. Chien SY, Hsu CH, Lin CC, Chuang YC, Lo YS, Hsi YT, et al.
    Environ Toxicol, 2017 Aug;32(8):2085-2092.
    PMID: 28383207 DOI: 10.1002/tox.22423
    Nasopharyngeal carcinoma (NPC), a tumor arising from epithelial cells that cover the surface and line the nasopharynx, is a rare malignancy worldwide but is prevalent in certain geographical areas, such as Southern Asia (Taiwan, Hong Kong, Singapore, Malaysia, and Southern China) and North Africa. Despite advances in diagnostic techniques and improvements in treatment modalities, the prognosis of NPC remains poor. Therefore, an effective chemotherapy regimen that enhances tumor sensitivity to chemotherapeutics is urgently required. Nimbolide, derived from Azadirachta indica, has a wide range of beneficial effects, including anti-inflammatory and anticancer properties. The present study evaluated the antitumor activity of nimbolide in NPC cells and its underlying mechanisms. Our results revealed that the treatment of HONE-1 cells with nimbolide potently inhibited cell viability. Moreover, nimbolide led to cell cycle arrest, which subsequently activated caspase-3, -8, and -9 and poly (ADP-ribose) polymerase to induce cell apoptosis. Moreover, nimbolide induced Bik, Bax, and t-Bid expression in HONE-1 cells. The results indicated that nimbolide induces apoptosis through the modulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Nimbolide induces apoptosis in human NPC cells and is a potential chemopreventive agent against NPC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2085-2092, 2017.
    Matched MeSH terms: Cell Cycle Checkpoints
  20. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links