Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Agustian J, Kamaruddin AH, Aboul-Enein HY
    Chirality, 2012 May;24(5):356-67.
    PMID: 22517322 DOI: 10.1002/chir.22019
    Because chiral liquid chromatography (LC) could become a powerful tool to estimate racemic atenolol quantity, excellent enantiomeric separation should be produced during data acquisition for satisfactory observation of atenolol concentrations throughout the racemic resolution processes. Selection of chiral LC column and analytical protocol that fulfill demands of the ultra fast LC analysis is essential. This article describes the characteristics of atenolol chromatographic separation that resulted from different resolution media and analytical protocols with the use of a Chiralcel® OD column. The chromatograms showed quite different characteristics of the separation process. The single enantiomer and racemic atenolol could be recognized by the Chiralcel® OD column in less than 20 min. Symmetrical peaks were obtained; however, several protocols produced peaks with wide bases and slanted baselines. Observations showed that efficient enantioresolution of racemic atenolol was obtained at slow mobile phase flow rate, decreased concentration of amine-type modifier but increased alcohol content in mobile phase and highest ultraviolet detection wavelength were required. The optimal ultra fast LC protocol enables to reduce and eliminate the peaks of either the atenolol solvent or the buffers and provided the highest peak intensities of both atenolol enantiomers.
    Matched MeSH terms: Chromatography, Liquid/methods*
  2. Agyei D, Pan S, Acquah C, Bekhit AEA, Danquah MK
    J Food Biochem, 2019 01;43(1):e12482.
    PMID: 31353495 DOI: 10.1111/jfbc.12482
    Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
    Matched MeSH terms: Chromatography, Liquid/methods
  3. Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S
    J Chromatogr A, 2010 Oct 29;1217(44):6791-806.
    PMID: 20851398 DOI: 10.1016/j.chroma.2010.08.033
    Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm(3), 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC-ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.
    Matched MeSH terms: Chromatography, Liquid/methods*
  4. Al-Qaim FF, Mussa ZH, Yuzir A
    Anal Bioanal Chem, 2018 Aug;410(20):4829-4846.
    PMID: 29806068 DOI: 10.1007/s00216-018-1120-9
    The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
    Matched MeSH terms: Chromatography, Liquid/methods*
  5. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
    Matched MeSH terms: Chromatography, Liquid/methods*
  6. Alsharif AM, Tan GH, Choo YM, Lawal A
    J Chromatogr Sci, 2017 03 01;55(3):378-391.
    PMID: 27903555 DOI: 10.1093/chromsci/bmw188
    Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.
    Matched MeSH terms: Chromatography, Liquid/methods*
  7. An Y, Cipollo JF
    Anal Biochem, 2011 Aug 1;415(1):67-80.
    PMID: 21545787 DOI: 10.1016/j.ab.2011.04.018
    Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)-TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006-2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.
    Matched MeSH terms: Chromatography, Liquid/methods
  8. Aziz MY, Hoffmann KJ, Ashton M
    PMID: 28863865 DOI: 10.1016/j.jchromb.2017.06.035
    PURPOSE: This study aimed to develop a sensitive, quantitative assay for the antimalarial piperaquine (PQ) and its metabolites M1 and M2 in human plasma.

    RESULTS: Analytes were gradiently separated on a C18 column and detected with a Sciex API 4000 MS/MS with an ESI source operated in the positive ion mode with deuterated PQ as internal standard. The response was linear in the range 3.9-2508nM with a runtime of 7.0min per sample. The method was applied to clinical samples from healthy volunteers.

    CONCLUSION: This LC-MS/MS method for the simultaneous quantitation of PQ and two of its metabolites in plasma may prove helpful for assessment of metabolite safety issues in vivo.

    Matched MeSH terms: Chromatography, Liquid/methods*
  9. Chan GF, Rashid NA, Chua LS, Ab llah N, Nasiri R, Ikubar MR
    Bioresour Technol, 2012 Feb;105:48-59.
    PMID: 22182471 DOI: 10.1016/j.biortech.2011.11.094
    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.
    Matched MeSH terms: Chromatography, Liquid/methods
  10. Chan SH, Lee W, Asmawi MZ, Tan SC
    PMID: 27232053 DOI: 10.1016/j.jchromb.2016.05.015
    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%.
    Matched MeSH terms: Chromatography, Liquid/methods*
  11. Cheng HJ, Ee R, Cheong YM, Tan WS, Yin WF, Chan KG
    Sensors (Basel), 2014;14(7):12511-22.
    PMID: 25019635 DOI: 10.3390/s140712511
    A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs), was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11.
    Matched MeSH terms: Chromatography, Liquid/methods
  12. Chua LS, Amin NA, Neo JC, Lee TH, Lee CT, Sarmidi MR, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Dec 15;879(32):3909-19.
    PMID: 22119436 DOI: 10.1016/j.jchromb.2011.11.002
    A number of three LC-MS/MS hybrid systems (QTof, TripleTof and QTrap) has been used to profile small metabolites (m/z 100-1000) and to detect the targeted metabolites such as quassinoids, alkaloids, triterpene and biphenylneolignans from the aqueous extracts of Eurycoma longifolia. The metabolite profiles of small molecules showed four significant clusters in the principle component analysis for the aqueous extracts of E. longifolia, which had been collected from different geographical terrains (Perak and Pahang) and processed at different extraction temperatures (35°C and 100°C). A small peptide of leucine (m/z 679) and a new hydroxyl methyl β-carboline propionic acid have been identified to differentiate E. longifolia extracts that prepared at 35°C and 100°C, respectively. From the targeted metabolites identification, it was found that 3,4ɛ-dihydroeurycomanone (quassinoids) and eurylene (squalene-type triterpene) could only be detected in the Pahang extract, whereas canthin-6-one-3N-oxide could only be detected in the Perak extract. Overall, quassinoids were present in the highest concentration, particularly eurycomanone and its derivatives compared to the other groups of metabolites. However, the concentration of canthin-6-one and β-carboline alkaloids was significantly increased when the roots of the plant samples were extracted at 100°C.
    Matched MeSH terms: Chromatography, Liquid/methods*
  13. Dai Y, Han L, Wang Y, Zhao K, Gu J, Bai H, et al.
    Leg Med (Tokyo), 2023 Nov;65:102303.
    PMID: 37598646 DOI: 10.1016/j.legalmed.2023.102303
    Nimetazepam (marketed brand names; Erimin and Lavol) is an intermediate acting benzodiazepine derivative, which was widely used mainly in East and Southeast Asian region countries including Japan, Malaysia, Brunei, the Philippines, Thailand, Indonesia, Hong Kong, Singapore and China. Nimetazepam and its metabolite 7-aminonimetazepam were quantified from human hair samples by liquid chromatography tandem-mass spectrometry (LC-MS/MS), under selective reaction monitoring mode. Using diazepam-d5 as an internal standard, the concentration of nimetazepam and its metabolite 7-aminonimetazepam could be determined by matrix matched calibration method. Extraction of the target compounds was performed by using methanol, followed by evaporation and being concentrated with nitrogen. The Limit of quantification concentrations of nimetazepam and its metabolite 7-aminonimetazepam in hair samples were both 25 pg/mg by established method. The concentrations of nimetazepam in hair samples obtained from 2 users were 27.4, and 22.0 pg/mg, respectively; the concentrations of 7-animonimetazepam in hair samples were 54.2 and 29.1 pg/mg, respectively. In our study, the 7-aminonimetazepam concentrations in hair was higher than those of nimetazepam in the authentic hair samples. To our knowledge, this is the first report to establish the detailed procedure for quantificating nimetazepam and 7-aminonimetazepam in human hair by LC-MS/MS.
    Matched MeSH terms: Chromatography, Liquid/methods
  14. Eid EE, Abdul AB, Rasedee A, Suliman FE, Sukari MA, Fatah SA
    J Mass Spectrom, 2011 Aug;46(8):772-81.
    PMID: 21834015 DOI: 10.1002/jms.1942
    A rapid, sensitive, specific and selective LC-MS/MS method for the determination of zerumbone (ZER) in human plasma using 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (DMTZ) as an internal standard (IS) has been developed and validated. ZER was chromatographed on C8 column using a mobile phase of acetonitrile/water (80:20, v/v) at a flow rate of 0.25 ml min(-1) . Quantitation was achieved using ESI+ interface, employing multiple reaction monitoring (MRM) mode at m/z 219 > 81 and 218 > 134 for ZER and IS, respectively. The calibration standards were linear over a range of 5-3000 ng ml(-1) (r(2)=0.9994) with an LLOQ of 5 ng ml(-1) (RSD %; 11.4% and bias%; 9.5%). Intra- and inter-day precision of ZER assay ranged from 0.18 to 3.56% with accuracy (bias) that varied between -5.09 and 4.3%, demonstrating good precision and accuracy. Recoveries of ZER and the IS from human plasma were above 85%. The developed method was validated for the determination of ZER in rat plasma. Linearity, stability of ZER and the ME on rat plasma were discussed. The applicability of the developed method was demonstrated by measuring ZER in rat plasma samples following intravenous and intraperitoneal administration of ZER prepared in hydroxypropyl-β-cyclodextrin (HPβCD) and sodium carboxymethyl cellulose (CMC), respectively, in 20 mg kg(-1) and this study indicated a clear significant difference (p<0.05) in pharmacokinetic parameters of ZER in ZER/HPβCD complex compared with ZER in CMC preparation.
    Matched MeSH terms: Chromatography, Liquid/methods*
  15. Fang TY, Praveena SM, deBurbure C, Aris AZ, Ismail SN, Rasdi I
    Chemosphere, 2016 Dec;165:358-368.
    PMID: 27665296 DOI: 10.1016/j.chemosphere.2016.09.051
    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples.
    Matched MeSH terms: Chromatography, Liquid/methods*
  16. Hakami AAH, Wabaidur SM, Ali Khan M, Abdullah Alothman Z, Rafatullah M, Siddiqui MR
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036289 DOI: 10.3390/molecules25194564
    Lower dye concentrations and the presence of several dyes along with other matrices in environmental samples restrict their determination. Herein, a highly sensitive and rapid ultra-performance tandem mass spectrometric method was developed for simultaneous determination of cationic dyes, namely methylene blue (MB), rhodamine B (RB) and crystal violet (CV), in environmental samples. To preconcentrate environmental samples, solid-phase extraction cartridges were developed by using hydrogen peroxide modified pistachio shell biomass (MPSB). The surface morphological and chemical functionalities of MPSB were well characterized. The developed method was validated considering different validation parameters. In terms of accuracy and precision, the %RSD for all three dyes at all four concentration points was found to be between 1.26 and 2.76, while the accuracy reported in terms of the recovery was found to be 98.02%-101.70%. The recovery was found to be in the range of 98.11% to 99.55%. The real sample analysis shows that MB, RB, and CV were found in the ranges of 0.39-5.56, 0.32-1.92 and 0.27-4.36 μg/mL, respectively.
    Matched MeSH terms: Chromatography, Liquid/methods*
  17. Hamzah N, Kjellberg M, Vanninen P
    Rapid Commun Mass Spectrom, 2023 May 15;37(9):e9495.
    PMID: 36799074 DOI: 10.1002/rcm.9495
    RATIONALE: This paper describes an in vitro study designed to identify metabolic biomarkers resulting from the conjugation of nitrogen mustards (NMs) with glutathione (GSH). The method developed is essential in providing evidence in the event of NM exposure in biomedical samples.

    METHODS: The mass spectral characterization of the proposed NMs-GSH conjugates was performed with liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). The final reaction mixtures were analysed in positive electrospray ionisation (ESI) at different incubation times.

    RESULTS: This study identified three types of conjugates in addition to ethanolamines, the hydrolysis products of NMs. Monoglutathionyl, diglutathionyl and phosphorylated conjugates were produced for each of the NMs, bis(2-chloroethyl)ethylamine (HN1), bis(2-chloroethyl)methylamine (HN2) and tris(2-chloroethyl)amine (HN3). The monoglutathionyl conjugates consisted of HN1-GSH, HN2-GSH and HN3-GSH. The spontaneous and primary conjugates of diglutathionyl were HN1-GSH2, HN2-GSH2 and HN3-GSH2. These included phosphorylated conjugates, namely HN1-GSH-PO4 , HN2-GSH-PO4 and HN3-GSH-PO4 , as might have formed due to hydrolysis in phosphate buffer.

    CONCLUSIONS: The mass spectral data of all conjugates formed in the presence of all NMs and GSH are reported in this study. These GSH metabolites can be used to confirm NMs toxicity in biological samples such as urine.

    Matched MeSH terms: Chromatography, Liquid/methods
  18. Hasnain MS, Ansari SA, Rao S, Tabish M, Singh M, Abdullah MS, et al.
    J Chromatogr Sci, 2017 Jul 01;55(6):587-594.
    PMID: 28335023 DOI: 10.1093/chromsci/bmx010
    The present work was employing the Quality by Design approach for the development and validation of a LC-MS-MS method to support the clinical advancement in determination of sildenafil in human plasma using lorazepam as an internal standard. Sample preparation involved solid phase extraction and calibration range observed between 3 and 1,700 ng/mL. The method was systematically optimized by employing Box-Behnken design and used mobile phase flow rate, pH and composition of mobile phase as the critical factors, and assessing the design for retention time and peak area as the responses. A substantial decrease in the variability associated with the method variables was shown in optimization studies and confirmed enhanced method robustness. The present studies revealed that developed method achieves all the regulatory requirements for linearity, accuracy, precision, selectivity, sensitivity and stability for the determination of sildenafil in human plasma. There was not any significant change in the stability of the drug shown by stability studies, performed in human plasma through freeze-thaw cycles, bench-top stability, short-term stability, long-term stability and auto sampler stability. In short, this method shows satisfactory results for the analysis of sildenafil in human plasma and possesses high degree of utility in pharmacokinetic and bioequivalence studies.
    Matched MeSH terms: Chromatography, Liquid/methods*
  19. Ho YB, Zakaria MP, Latif PA, Saari N
    J Chromatogr A, 2012 Nov 2;1262:160-8.
    PMID: 23026257 DOI: 10.1016/j.chroma.2012.09.024
    A multi-residue analytical method was developed to quantify nine antibiotics and one hormone in soil, broiler manure and manure compost. The developed method was based on ultrasonic extraction with MeOH:ACN:EDTA:McIlvaine buffer, solid phase extraction (SPE) using HLB (3 cc/60 mg) cartridge, followed by instrumental analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 25 min total run time. It was validated and tested on soil, broiler manure and manure compost samples and showed that the method is able to simultaneously detect and quantify the target analytes with good selectivity and sensitivity. The developed method was linear in a concentration range from its instrumental quantification limit (IQL) to 500 ng/mL, with correlation coefficients higher than 0.999. The overall method performance was good for the majority of the analytes, with recoveries range from 63% to 121% in all the sample matrices. The method quantification limit (MQL) for the 10 target analytes in the soil, broiler manure and manure compost samples were 2-10, 3-16 and 5-15 μg/kg dry weight (DW), respectively. The method has also included tilmicosin, an antibiotic known to be reported in the environment for the first time. The developed method was then applied on broiler manure samples and its relative manure amended agricultural soil samples to identify and quantify veterinary antibiotic and hormone residues in the environment. These analytes were detected in broiler manure and soil samples, with maximum concentrations reaching up to 78516.1 μg/kg DW (doxycycline) and 1331.4 μg/kg DW (flumequine), respectively. The results showed that the method can potentially be adopted for the analysis of veterinary antibiotic and hormone wastes in solid environmental matrices.
    Matched MeSH terms: Chromatography, Liquid/methods*
  20. Jayapalan JJ, Lee CS, Lee CC, Ng KL, Junit SM, Hashim OH
    Clin Biochem, 2018 Mar;53:127-131.
    PMID: 29355489 DOI: 10.1016/j.clinbiochem.2018.01.008
    BACKGROUND: Benign thyroid goiter (BTG) and papillary thyroid carcinoma (PTC) are often interchangeably misdiagnosed.

    METHODS: Pooled urine samples of patients with BTG (n=10), patients with PTC (n=9) and healthy controls (n=10) were subjected to iTRAQ analysis and immunoblotting.

    RESULTS: The ITRAQ analysis of the urine samples detected 646 proteins, 18 of which showed significant altered levels (p<0.01; fold-change>1.5) between patients and controls. Whilst four urinary proteins were commonly altered in both BTG and PTC patients, 14 were unique to either BTG or PTC. Amongst these, four proteins were further chosen for validation using immunoblotting, and the enhanced levels of osteopontin in BTG patients and increased levels of a truncated gelsolin fragment in PTC patients, relative to controls, appeared to corroborate the findings of the iTRAQ analysis.

    CONCLUSION: The data of the present study is suggestive of the potential application of urinary osteopontin and gelsolin to discriminate patients with BTG from those with PTC non-invasively. However, this needs to be further validated in studies of individual urine samples.

    Matched MeSH terms: Chromatography, Liquid/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links