Displaying publications 1 - 20 of 102 in total

Abstract:
Sort:
  1. Nur Ain, A.R., Mohd Sabri, M.G., Wan Rafizah, W.A., Nurul Azimah, M.A., Wan Nik, W.B.
    ASM Science Journal, 2018;11(101):56-67.
    MyJurnal
    Corrosion is a natural deterioration process that destructs metal surface. Metal of highly
    protected by passivation layer such as Stainless Steel 316L also undergoes pitting corrosion
    when continuously exposed to aggressive environment. To overcome this phenomenon, application
    of epoxy based coating with addition of zinc oxide- poly (3,4-ethylenedioxythiophene)
    doped with poly (styrene sulphonate) hybrid nanocomposite additive was introduced as
    paint/metal surface coating. The compatibility between these two materials as additive
    was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD),
    Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray spectroscopy (FESEM/EDX)
    and Transmission Electron Microscopy (TEM) analysis. The effect of nanocomposite
    wt.% in epoxy based coating with immersion duration in real environment on corrosion
    protection performance was analyzed through potentiodynamic polarization analysis. The
    main finding showed that addition of hybrid nanocomposite had increased corrosion protection
    yet enhanced corrosion process when excess additives was loaded into epoxy coating.
    Addition of 2 wt.% ZnO-PEDOT:PSS was found significantly provided optimum corrosion
    protection to stainless steel 316L as the corrosion rate for 0 day, 15 days and 30 days of
    immersion duration is 0.0022 mm/yr, 0.0004 mm/yr and 0.0015 mm/yr; respectively.
    Matched MeSH terms: Corrosion
  2. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Corrosion
  3. Wan Bakar W, McIntyre J
    Aust Dent J, 2008 Sep;53(3):226-34.
    PMID: 18782366 DOI: 10.1111/j.1834-7819.2008.00053.x
    Erosive substances such as gastric acids, lemon juice and even the less erosive cola drinks have been extensively investigated for their destructive effects on enamel. However, their effects on the tooth-coloured restoratives has not been widely analysed. The objective of this study was to assess their effects on the more commonly used glass containing restorative materials in vitro.
    Matched MeSH terms: Corrosion
  4. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS
    Bioresour Technol, 2015 Aug;190:395-401.
    PMID: 25976915 DOI: 10.1016/j.biortech.2015.04.084
    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.
    Matched MeSH terms: Corrosion
  5. Thi S, Lee KM
    Bioresour Technol, 2019 Jun;282:525-529.
    PMID: 30898410 DOI: 10.1016/j.biortech.2019.03.065
    In this work, a novel solvent, deep eutectic solvent (DES) was applied to examine its effectiveness in pretreating OPEFB. Three types of DESs, i.e. choline chloride-lactic acid (ChCl-LA), choline chloride-urea (ChCl-U) and choline chloride-glycerol (ChCl-G) were investigated. The pretreatment performance was based on cellulose digestibility, structural and morphology changes. At molar ratio of 1:2, ChCl-LA attained the highest reducing sugars yield of 20.7%, followed by ChCl-G (20.0%) and ChCl-U (16.9%). FT-IR and SEM results further confirmed the outstanding ability of ChCl-LA due of its ability in cellulose, hemicellulose and lignin disruption, exposing its cellulose fraction to enzymatic hydrolysis. ChCl-LA is also more favorable compare to acid and alkaline solvents as it could prevent sugars loss, use of expensive corrosion resistant equipment and ease products separation.
    Matched MeSH terms: Corrosion
  6. Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, et al.
    Biotechnol J, 2024 Mar;19(3):e2300464.
    PMID: 38509814 DOI: 10.1002/biot.202300464
    The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
    Matched MeSH terms: Corrosion
  7. Joseph Sahaya Anand, T., Sivarao, Ganesh Kumar, K.
    MyJurnal
    Ni3A1 is an intermetallic compound which has unique property with temperature. Annealing is done at temperature 300, 500, and 700°C for 1 hour and analyzed with X-ray Diffraction (XRD) and Energy Dispersive X-ray (EDX) analysis for their crystallographic nature. EDX confirmed the composition of Ni3A1 with exact stoichiometry, whereas the XRD confirmed the crystallographic nature of the material. The mechanical properties by hardness results showed that Ni3A1 has highest Vickers hardness value of 554 HV when it is non-heat treated. Its hardness drops as it undergoes annealing process. Corrosion analysis by tafel test shows that its polarization resistance may increase up to 4145 W cm2 when annealed at high temperature. These results show that Ni3A1 is a promising material to be considered as an alternative automotive body.
    Matched MeSH terms: Corrosion
  8. Kashyap S, Kumar S, Ramasamy K, Lim SM, Shah SAA, Om H, et al.
    Chem Cent J, 2018 Nov 20;12(1):117.
    PMID: 30460466 DOI: 10.1186/s13065-018-0487-1
    BACKGROUND: The transition metal complexes formed from Schiff base is regarded as leading molecules in medicinal chemistry. Because of the preparative availability and diversity in the structure of central group, the transition metals are important in coordination chemistry. In the present work, we have designed and prepared Schiff base and its metal complexes (MC1-MC4) and screened them for antimicrobial, anticancer and corrosion inhibitory properties.

    METHODOLOGY: The synthesized metal complexes were characterized by physicochemical and spectral investigation (UV, IR, 1H and 13C-NMR) and were further evaluated for their antimicrobial (tube dilution) and anticancer (SRB assay) activities. In addition, the corrosion inhibition potential was determined by electrochemical impedance spectroscopy (EIS) technique.

    RESULTS AND DISCUSSION: Antimicrobial screening results found complexes (MC1-MC4) to exhibit less antibacterial activity against the tested bacterial species compared to ofloxacin while the complex MC1 exhibited greater antifungal activity than the fluconazole. The anticancer activity results found the synthesized Schiff base and its metal complexes to elicit poor cytotoxic activity than the standard drug (5-fluorouracil) against HCT116 cancer cell line. Metal complex MC2 showed more corrosion inhibition efficiency with high Rct values and low Cdl values.

    CONCLUSION: From the results, we can conclude that complexes MC1 and MC2 may be used as potent antimicrobial and anticorrosion agents, respectively.

    Matched MeSH terms: Corrosion
  9. Jamil DM, Al-Okbi AK, Al-Baghdadi SB, Al-Amiery AA, Kadhim A, Gaaz TS, et al.
    Chem Cent J, 2018 Feb 05;12(1):7.
    PMID: 29404816 DOI: 10.1186/s13065-018-0376-7
    BACKGROUND: Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were employed as highly efficient inhibitors of mild steel corrosion by corrosive acid.

    FINDINGS: The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight.

    CONCLUSIONS: Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.

    Matched MeSH terms: Corrosion
  10. Hussin MH
    Data Brief, 2019 Feb;22:971-976.
    PMID: 30740480 DOI: 10.1016/j.dib.2019.01.029
    The anti-corrosion performances of single(TEOS) and hybrid (APTES-TEOS) sol-gel coatings on Al alloy samples exposed to 3.5 wt% NaCl were evaluated employing electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The data acquired using the three corrosion analysis techniques were in accordance with each other where hybrid sol-gel coating offered the lowest corrosion rate and current density in comparison to the single precursor silanol coating. Tafel curves suggested that the hybrid silane coatings mitigate both the anodic and cathodic reactions simultaneously (mixed type inhibitor). These techniques justified that incorporation of hybrid sol-gel improved the Al corrosion protection performance considerably.
    Matched MeSH terms: Corrosion
  11. Soundhar A, Zubar HA, Sultan MTBHH, Kandasamy J
    Data Brief, 2019 Apr;23:103671.
    PMID: 30788395 DOI: 10.1016/j.dib.2019.01.019
    Newly prepared titanium alloy (Ti-13Zr-13Nb (TZN)) using powder metallurgy is considered in this investigation. Titanium alloys (TZN) are used in hip and knee replacement for orthopedic implants. Conventional machining, TZN alloys produce higher tool wear rate and poor surface quality, but this can be reduced by Electrical Discharge Machining (EDM) method. Moreover, EDM produce good biological and corrosion resistant surface. In this research, experiments were conducted by considering the influential process factors such as pulse on time, pulse off time, voltage, and current. The experiments were designed based on Response Surface Methodology (RSM) of face centered central composite design. Analysis of Variance (ANOVA) was conducted to identify the significance process factors and their relation to output responses such as Electrode Wear Rate (EWR), Surface Roughness (SR) and Material Removal Rate (MRR). Further, an empirical model was developed by RSM in order to predict the output responses.
    Matched MeSH terms: Corrosion
  12. Sulaimon AA, Murungi PI, Tackie-Otoo BN, Nwankwo PC, Bustam MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119309-119328.
    PMID: 37924403 DOI: 10.1007/s11356-023-30635-0
    Plant extracts have been shown to effectively inhibit metal corrosion. Using the Box-Behnken design, gravimetric, and electrochemical techniques, analyses were designed to investigate the anti-corrosion potential of okra in a 1M HCl medium. The inhibition performances derived from the various methods were in good agreement, demonstrating that physio-chemisorption was effective and adhered to the Langmuir isotherm model. The efficiency of okra mucilage extract was 96% at a much lower concentration compared to 91.2% and 88.4% for the unsieved extract and gelly-okra filtrate, respectively. FTIR results showed the presence of several functional groups in the okra mucilage extract that are associated with adsorption, and TGA analysis revealed that the extract has high thermal stability. FESEM analysis also supported evidence of adsorption. It was determined that corrosion inhibition by okra mucilage extract was primarily influenced by temperature, followed by extract concentration, with immersion time having the least effect. From the model optimization, it was observed that okra mucilage extract at 200 ppm, 60°C, and 24 h gave an inhibition efficiency of 89.98% and high desirability. These results demonstrate the high capacity of natural okra as an efficient biodegradable corrosion inhibitor.
    Matched MeSH terms: Corrosion
  13. Mohd Ali MKFB, Abu Bakar A, Md Noor N, Yahaya N, Ismail M, Rashid AS
    Environ Technol, 2017 Oct;38(19):2427-2439.
    PMID: 27875932 DOI: 10.1080/09593330.2016.1264486
    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.
    Matched MeSH terms: Corrosion
  14. Azani NFSM, Haafiz MKM, Zahari A, Poinsignon S, Brosse N, Hussin MH
    Int J Biol Macromol, 2020 Jun 15;153:385-398.
    PMID: 32145234 DOI: 10.1016/j.ijbiomac.2020.03.020
    Oil palm frond (OPF) is one of largest contributions to the biomass waste from oil palm plantation. In this work, OPF has been successfully utilized to prepare cellulose nanocrystal (OPF-CNC) by acid hydrolysis. OPF was initially treated with autohydrolysis treatment. The obtained OPF-CNC was characterized via complementary analyses. The produced OPF-CNC showed a high crystallinity index value (60%) and high BET surface area (26.10 m2 g-1) as compared to α-cellulose (crystallinity index: 54% and BET surface area:7.14 m2g-1). The surface analyses via scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrated that the OPF-CNC has a smooth surface with a needle-like shape, where the average length and diameter are 95.09 nm and 6.81 nm, respectively. The corrosion analyses via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) illustrate that the coated mild steel with the inclusion of 0.5 wt% OPF-CNC has managed to sharply reduce the corrosion (99%). The coated mild steel with the inclusion of 0.5 wt% OPF-CNC showed the highest hydrophobicity (100.5 ± 0.7°) and has lowest amount of O via water contact angle and energy dispersive X-ray spectroscopy (EDX) analyses respectively, indicating lowest corrosion rate.
    Matched MeSH terms: Corrosion
  15. Junaedi S, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB
    Int J Mol Sci, 2013 Jun 04;14(6):11915-28.
    PMID: 23736696 DOI: 10.3390/ijms140611915
    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.
    Matched MeSH terms: Corrosion
  16. Siti Noriah Mohd Shotor, Nur Anis Atirah Zulkiflee
    MyJurnal
    This paper deals with a review of the inhibition activity of a Schiff bases on the deterioration of mild steel in hydrochloric acid media. Two Schiff base ligands namely N,N’- Bis(salicylidene) ethylenediamine (Sadimine) and N,N’-Bis(bromosalicylidene)- ethylenediamine (Brosadimine) were synthesized from the condensation reactions of salicylaldehyde or 5-bromosalicylaldehyde with ethylenediamine respectively and evaluated as corrosion inhibitor for mild steel in 1 M HCl solution using weight loss method. The use of inhibitors is one of the most practical methods for protection of mild steel against corrosion in acidic media. Schiff bases are widely being employed in such applications. This paper highlights the influence of structure–inhibition activity relationship of Schiff base compounds
    on their performance as corrosion inhibitors of mild steel in acid media. Sadimine and
    Brosadimine show appreciable corrosion inhibition efficiency against the corrosion of mild
    steel in 1 M HCl solution at room temperature. It has been found that Brosadimine shows
    greater corrosion inhibition efficiency than Sadimine due to extra halogen group presence in
    the structure. As the concentration of studied inhibitors increases, the corrosion inhibition
    efficiency of the prepared compounds also increases. This study demonstrated that corrosion
    inhibitors for metals and alloys can preserve the quality and life of metals from corrosion.
    Matched MeSH terms: Corrosion
  17. Nur Alia Atiqah Alias, Nabilah Syakirah Zolkifli, Mimi Wahidah Mohd Radzi, Nur Nadia Dzulkifli
    MyJurnal
    Mild steel plays an essential part in many construction industries due to its low cost and excellent mechanical properties. However, the use of strong acid in pickling, construction, and oil refining processes adds to a serious corrosion problem for mild steel. Two Cu(II) dithiocarbamate (DTC) complexes were successfully synthesised, namely Cu(II) ethyl-benzyl DTC (Cu[EtBenzdtc]2) and Cu(II) butyl-methyl DTC (Cu[BuMedtc]2) complexes, by a condensation reaction and subsequently used to scrutinise the corrosion resistance activity towards mild steel in acidic media. The proposed structures of complexes were characterised by using the Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies. The melting point for Cu[EtBenzdtc]2 was found around 362–375°C, and 389–392°C for Cu[BuMedtc]2. The percentages of Cu(II) found in Cu[EtBenzdtc]2 and Cu[BuMedtc]2 were 7.6% and 7.5%, respectively. Both complexes were non-electrolyte based on the molar conductivity analysis. Their corrosion inhibition performances were tested by using a weight loss measurement. Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2. The complexes showed good effectiveness in sulfuric acid (H2SO4) compared to hydrochloric acid (HCl) solution. Furthermore, Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2 with the highest percentage of corrosion inhibition recorded at 91.8%. Meanwhile, the highest percentage of corrosion inhibition shown by Cu[EtBenzdtc]2 was only 86.9%. The lowest corrosion rate shown for Cu[BuMedtc]2 was 8.1944×10-4 cm-1 h-1. Meanwhile, the Cu[EtBenzdtc]2 showed the lowest corrosion rate only at 1.3194×10-3 cm-1 h-1. This implies that Cu[BuMedtc]2 showed lower corrosion rate but higher inhibition efficiency compared to Cu[EtBenzdtc]2.
    Matched MeSH terms: Corrosion
  18. Syahrul Affandi Saidi, Beh, Jun Long, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    This article presents a Wall Climbing Robot (WCR) that able to move on ferromagnetic vertical surface to carry out visual inspection process. Visual inspection process is important in the industry to check the condition of storage tank, surface of building, piping or equipment thus can prevents structures collapsing or explosion which would bring a huge loss to the company. Moreover, most of the structures nowadays is expose under the sun and rain, corrosion and cracks could easily occur on the surface after exposing under sunlight and rain a long period of time. Therefore the periodic visual inspection process need to be carry out to detect the damaged occur on the surface of the structure and take action at the fastest time to ensure the safety of the structures and extend the lifespan of the structures. With the well maintenance to the structures, the condition of the structures is monitored and the lifespan is longer. The risk of collapse of the building is decrease by a large margin. Normally, the periodic visual inspection process is performed by operator. Sometime the temporary scaffolding is needed to reach the higher place to carry out the inspection. However, this method create a hazardous environment to the operator and cause the safety of the operator threatened. Therefore, the proposed WCR could help operator to work at the hazardous environment. The permanent magnet is used to provide adhesion for WCR, thus WCR able to move on vertical ferromagnetic surface. The WCR is controlled by operator via wireless remote to reach the higher place or the hazardous environment. The operator then can stream the on the real time images via web browser which connected to the same network with the WCR. Hence, the condition of the surface can be observed.
    Matched MeSH terms: Corrosion
  19. Ibrahim, R.E., Talari, M.K., Sabrina, M. Yahaya, Rosmamuhamadani, R., Sulaiman, S., Ismail, M.I.S.
    MyJurnal
    The aluminium-silicon (Al-Si) based on Metal Matrix Composites (MMCs) is widely used in lightweight
    constructions and transport applications requiring a combination of high strength and ductility. A grain
    refinement plays a crucial role in improving characteristics and properties of Al alloys. In this investigation,
    titanium diboride (TiB2) and scandium (Sc) inoculants were added to the Al-Si alloys for grain refinement of
    an alloy. In this investigation, the corrosion resistance rate of Al-Si cast alloy reinforced by TiB2 and Sc were
    measured by potentiostat (AUTOLAB) instrument. The aim of this research is to investigate the corrosion
    rate for Al-Si-TiB2-Sc composites that immersed in different concentration of acidic solutions. Besides, the
    immersion time of acidic solutions also was investigated. All the samples were prepared accordingly for
    ASTM standard by the composition of 6.0 wt% TiB2 and 0.6wt% Sc. All the samples undergo cold mounting
    technique for easy handling on corrosion tests. Then the samples were immersed in two different
    concentrations acidic medium solutions, which were 0.1.and 1.0 M hydrochloric acids (HCl). The corrosion
    rate also was investigated for immersion samples of 1.0 M HCl for 21 days. From the results obtained, added
    TiB2 and Sc onto Al-Si alloy gave the better properties in corrosion resistance. Corrosion rates to reduce when
    the samples were immersed in a lower concentration of acidic medium, 0.1 HCl. However, there are some
    significant on the result but it still following the corrosion rates trend. Thus, improvements to reinforcement
    content need to be done in further research to cover the lack of this corrosion rates trend.
    Matched MeSH terms: Corrosion
  20. Zaifol Samsu, Mohd Harun, Mahdi E. Mahmoud, Norasiah Ab Kasim, Katrul Hisham Alahudin, Zaiton Selamat
    MyJurnal
    An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
    Matched MeSH terms: Corrosion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links