Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Nurani LH, Rohman A, Windarsih A, Guntarti A, Riswanto FDO, Lukitaningsih E, et al.
    Molecules, 2021 Dec 16;26(24).
    PMID: 34946709 DOI: 10.3390/molecules26247626
    Curcuma longa, Curcuma xanthorrhiza, and Curcuma manga have been widely used for herbal or traditional medicine purposes. It was reported that turmeric plants provided several biological activities such as antioxidant, anti-inflammatory, hepatoprotector, cardioprotector, and anticancer activities. Authentication of the Curcuma species is important to ensure its authenticity and to avoid adulteration practices. Plants from different origins will have different metabolite compositions because metabolites are affected by soil nutrition, climate, temperature, and humidity. 1H-NMR spectroscopy, principal component analysis (PCA), and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were used for authentication of C. longa, C. xanthorrhiza, and C. manga from seven different origins in Indonesia. From the 1H-NMR analysis it was obtained that 14 metabolites were responsible for generating classification model such as curcumin, demethoxycurcumin, alanine, methionine, threonine, lysine, alpha-glucose, beta-glucose, sucrose, alpha-fructose, beta-fructose, fumaric acid, tyrosine, and formate. Both PCA and OPLS-DA model demonstrated goodness of fit (R2 value more than 0.8) and good predictivity (Q2 value more than 0.45). All OPLS-DA models were validated by assessing the permutation test results with high value of original R2 and Q2. It can be concluded that metabolite fingerprinting using 1H-NMR spectroscopy and chemometrics provide a powerful tool for authentication of herbal and medicinal plants.
    Matched MeSH terms: Curcuma/classification*; Curcuma/chemistry*
  2. Banu M, Krishnamurthy KS, Srinivasan V, Kandiannan K, Surendran U
    J Sci Food Agric, 2024 May;104(7):4176-4188.
    PMID: 38385763 DOI: 10.1002/jsfa.13299
    BACKGROUND: Turmeric cultivation primarily thrives in India, followed by Bangladesh, Cambodia, Thailand, China, Malaysia, Indonesia and the Philippines. India leads globally in both area and production of turmeric. Despite this, there is a recognized gap in research regarding the impact of climate change on site suitability of turmeric. The primary objective of the present study was to evaluate both the present and future suitability of turmeric cultivation within the humid tropical region of Kerala, India, by employing advanced geospatial techniques. The research utilized meteorological data from the Indian Meteorological Department for the period of 1986-2020 as historical data and projected future data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Four climatic scenarios of shared socioeconomic pathway (SSP) from the Intergovernmental Panel on Climate Change AR6 model of MIROC6 for the year 2050 (SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5) were used.

    RESULTS: The results showed that suitable area for turmeric cultivation is declining in future scenario and this decline can be primarily attributed to fluctuations in temperature and an anticipated increase in rainfall in the year 2050. Notable changes in the spatial distribution of suitable areas over time were observed through the application of geographic information system (GIS) techniques. Importantly, as per the suitability criteria provided by ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), all the districts in Kerala exhibited moderately suitable conditions for turmeric cultivation. With the GIS tools, the study identified highly suitable, moderately suitable, marginally suitable and not suitable areas of turmeric cultivation in Kerala. Presently 28% of area falls under highly suitable, 41% of area falls under moderately suitable and 11% falls under not suitable for turmeric cultivation. However, considering the projected scenarios for 2050 under the SSP framework, there will be a significant decrease in highly suitable area by 19% under SSP 5-8.5. This reduction in area will have an impact on the productivity of the crop as a result of changes in temperature and rainfall patterns.

    CONCLUSION: The outcome of the present research suggests that the state of Kerala needs to implement suitable climate change adaptation and management strategies for sustaining the turmeric cultivation. Additionally, the present study includes a discussion on potential management strategies to address the challenges posed by changing climatic conditions for optimizing turmeric production in the region. © 2024 Society of Chemical Industry.

    Matched MeSH terms: Curcuma*
  3. Taheri S, Abdullah TL, Abdullah NA, Ahmad Z, Karimi E, Shabanimofrad MR
    Genet. Mol. Res., 2014;13(3):7339-46.
    PMID: 25222232 DOI: 10.4238/2014.September.5.12
    The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cultivated in Malaysia. Of the primers tested, 8 (of 17) SSR primers were selected for their reproducibility and high rates of polymorphism. The number of presumed alleles revealed by the SSR analysis ranged from two to six alleles, with a mean value of 3.25 alleles per locus. The values of HO and HE ranged from 0 to 0.8 (mean value of 0.2) and 0.1837 to 0.7755 (mean value of 0.5102), respectively. Eight SSR primers yielded 26 total amplified fragments and revealed high rates of polymorphism among the varieties studied. The polymorphic information content varied from 0.26 to 0.73. Dice's similarity coefficient was calculated for all pairwise comparisons and used to construct an unweighted pair group method with arithmetic average (UPGMA) dendrogram. Similarity coefficient values from 0.2105 to 0.6667 (with an average of 0.4386) were found among the five varieties examined. A cluster analysis of data using a UPGMA algorithm divided the five varieties/hybrids into 2 groups.
    Matched MeSH terms: Curcuma/classification*; Curcuma/genetics*
  4. Yew HZ, Berekally TL, Richards LC
    Aust Dent J, 2013 Dec;58(4):468-77.
    PMID: 24320904 DOI: 10.1111/adj.12099
    The aim of this study was to evaluate colour stability upon exposure to spices of a nano-filled and a micro-hybrid resin composite finished either with Sof-Lex™ discs (SLD) or against plastic strips (PS).
    Matched MeSH terms: Curcuma*
  5. Sirat HM, Jamil S, Rahman AA
    Nat Prod Commun, 2009 Sep;4(9):1171.
    PMID: 19831021
    From the rhizomes of Curcuma ochrorhiza, four sesquiterpenes, isofuranodiene, germacrene, furanogermenone and zederone, have been isolated, the structures of which have been elucidated by spectroscopic methods.
    Matched MeSH terms: Curcuma/chemistry*
  6. Jemain, S.F.P., Jamal, P., Raus, A. R., Amid, A., Jaswir, I.
    MyJurnal
    Medicinal properties of Malaysian Curcuma caesia have not been studied extensively, even though it has been used as a traditional remedy. This study examined the effects of various extraction temperatures (30, 40, 50, 60, 70oC) using a high frequency (40 kHz) ultrasonic extraction method, time (30,60,90 and 120 minutes), pH (1,2,3,4,5,6,7,8,9,10) on the extraction yield of total phenolics and DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activities from C. caesia rhizome. Extraction was most efficient at pH 6.0, while the extraction time of 30 minutes and temperature of 60oC was the best in terms of total phenolics content and DPPH scavenging activity. This study is important due to its ability to improve extraction of total phenolics compound using ultrasonic extraction method while maintaining a relatively high DPPH scavenging activity of the extracts.
    Matched MeSH terms: Curcuma
  7. Wahab IR, Blagojević PD, Radulović NS, Boylan F
    Chem Biodivers, 2011 Nov;8(11):2005-14.
    PMID: 22083913 DOI: 10.1002/cbdv.201100135
    Analysis by GC and GC/MS of the essential oil obtained from Malaysian Curcuma mangga Val. & Zijp (Zingiberaceae) rhizomes allowed the identification of 97 constituents, comprising 89.5% of the total oil composition. The major compounds were identified as myrcene (1; 46.5%) and β-pinene (2; 14.6%). The chemical composition of this and additional 13 oils obtained from selected Curcuma L. taxa were compared using multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis). The results of the statistical analyses of this particular data set pointed out that 1 could be potentially used as a valuable infrageneric chemotaxonomical marker for C. mangga. Moreover, it seems that C. mangga, C. xanthorrhiza Roxb., and C. longa L. are, with respect to the volatile secondary metabolites, closely related. In addition, comparison of the essential oil profiles revealed a potential influence of the environmental (geographical) factors, alongside with the genetic ones, on the production of volatile secondary metabolites in Curcuma taxa.
    Matched MeSH terms: Curcuma/genetics; Curcuma/growth & development; Curcuma/chemistry*
  8. Choo BKM, Shaikh MF
    Curr Neuropharmacol, 2021;19(9):1496-1518.
    PMID: 33998991 DOI: 10.2174/1570159X19666210517120413
    Curcuma longa (Turmeric) is a tropical herbaceous perennial plant of the family Zingiberaceae and contains curcuminoids, sesquiterpenoids and monoterpenoids as its major components. Given the broad range of activities that Curcuma longa possesses and also its use as a traditional epilepsy remedy, this review attempts to systematically review the experimentally proven activities of Curcuma longa and its bioactive components, which are related to the management of epileptic seizures. Using the PRISMA model, five databases (Google Scholar, PubMed, ScienceDirect, SCOPUS and SpringerLink) were searched using the keywords ["Curcuma longa" AND "Epilepsy"] and ["Curcuma longa" AND "Seizures"], leaving 34 articles that met the inclusion criteria. The present systematic review elaborated on the experimentally proven potential of Curcuma longa components, such as an aqueous extract of Curcuma longa itself, Curcuma longa oil and active constituents like curcuminoids and bisabolene sesquiterpenoids found in Curcuma longa with anti-seizure potential. Using human equivalent dose calculations, human treatment parameters were suggested for each component by analysing the various studies in this review. This review also determined that the principal components possibly exert their anti-seizure effect via the reduction of corticosterone, modulation of neurotransmitters signalling, modulation of sodium ion channels, reduction of oxidative DNA damage, reduction of lipid peroxidation, upgregulation of brain-derived neurotrophic factor (BDNF) and γ-aminobutyric acid (GABA) mediated inhibition. It is anticipated that this review will help pave the way for future research into the development of Curcuma longa and its neuroactive constituents as potential drug candidates for the management of epilepsy.
    Matched MeSH terms: Curcuma
  9. Jani NA, Maarof NI, Zahari MMFM, Jamil M, Zakaria II, Mohamad Zobir SZ, et al.
    Nat Prod Res, 2024 Mar;38(6):926-932.
    PMID: 37144399 DOI: 10.1080/14786419.2023.2208256
    The chemical compositions, in vitro and in silico anti-dengue activity of the essential oils of the rhizomes of Curcuma longa Linn., C. aeruginosa Roxb., and C. xanthorrhiza Roxb. had been investigated. The C. longa oil was mainly composed of ar-turmerone (54.0%) and curlone (17.7%), while the C. aeruginosa oil was rich in curzerenone (23.4%), 1,8-cineole (21.2%), and camphor (7.1%). Xanthorrhizol (21.6%), β-curcumene (19.5%), ar-curcumene (14.2%), and camphor (9.2%) were the major compounds in the C. xanthorrhiza oil. Among the oils, the C. longa oil was found to be the most active NSB-NS3 protease inhibitor (IC50 1.98 μg/mL). PLS biplot disclosed that the essential oils were classified into three separated clusters based on their characteristic chemical compositions, with C. longa positioned closest to the in vitro anti-dengue activity. Four compounds from the C. longa oil have both hydrogen and hydrophobic bonds that could be responsible for the DENV-2 NS2B-NS3 inhibitory effect.
    Matched MeSH terms: Curcuma
  10. Salleh NA, Ismail S, Ab Halim MR
    Pharmacognosy Res, 2016 Oct-Dec;8(4):309-315.
    PMID: 27695274 DOI: 10.4103/0974-8490.188873
    BACKGROUND: Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer.
    OBJECTIVE: The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities.
    MATERIALS AND METHODS: The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM.
    RESULTS: In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC50 values ranging between 9.59-22.76 μg/mL and 110.71-526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition.
    CONCLUSION: These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes.
    SUMMARY: Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used: BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary deoxyribonucleic acid, CDNB: 1-Chloro-2,4-dinitrobenzene, CuSO4.5H2O: Copper(II) sulfate pentahydrate, CXEE: Curcuma xanthorrhiza ethanol extract, CXAE: Curcuma xanthorrhiza aqueous extract, GC-MS: Gas chromatography-mass spectroscopy, GSH: Glutathione, GST: Glutathione S-transferase, KCl: Potassium chloride, min: Minutes, MgCl2: Magnesium chloride, mg/mL: Concentration (weight of test substance in milligrams per volume of test concentration), mM: Milimolar, Na2CO3: Sodium carbonate, NaOH: Sodium hydroxide, nmol: nanomol, NSAIDs: Non-steroidal antiinflammatory drug, p-NP: para-nitrophenol, RLU: Relative light unit, SEM: Standard error of mean, UDPGA: UDP-glucuronic acid, UGT: UDP-glucuronosyltransferase.
    KEYWORDS: Curcuma xanthorrhiza; UDP-glucuronosyltransferase; glutathione transferase; xanthorrhizol
    Matched MeSH terms: Curcuma
  11. Syed HK, Liew KB, Loh GO, Peh KK
    Food Chem, 2015 Mar 1;170:321-6.
    PMID: 25306352 DOI: 10.1016/j.foodchem.2014.08.066
    A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, T<1.1, K' was 2.68-3.75, HETP about 37 and Rs was 1.8. The method was linear from 2 to 200 μg/mL with a correlation coefficient of 0.9998. The intra-day precision and accuracy for curcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions.
    Matched MeSH terms: Curcuma/chemistry*
  12. Taheri S, Abdullah TL, Abdullah NA, Ahmad Z
    Genet. Mol. Res., 2012;11(3):3069-76.
    PMID: 23007984
    The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (ISSRs) to assess genetic variation and relationships between five varieties of curcuma (Curcuma alismatifolia) cultivated in Malaysia. Sixteen ISSR primers generated 139 amplified fragments, of which 77% had high polymorphism among these varieties. These markers were used to estimate genetic similarity among the varieties using Jaccard's similarity coefficient. The similarity matrix was used to construct a dendrogram, and a principal component plot was developed to examine genetic relationships among varieties. Similarity coefficient values ranged from 0.40 to 0.58 (with a mean of 0.5) among the five varieties. The mean value of number of observed alleles, number of effective alleles, mean Nei's gene diversity, and Shannon's information index were 8.69, 1.48, 0.29, and 0.43, respectively.
    Matched MeSH terms: Curcuma/genetics*
  13. Aspollah Sukari M, Wah TS, Saad SM, Rashid NY, Rahmani M, Lajis NH, et al.
    Nat Prod Res, 2010 May;24(9):838-45.
    PMID: 20461629 DOI: 10.1080/14786410903052951
    Curcuma ochrorhiza ('temu putih') and C. heyneana ('temu giring') are two Zingiberaceous species which are commonly used in traditional medicine in Malaysia and Indonesia. Phytochemical investigations on these Curcuma species have resulted in the isolation of six sesquiterpenes, namely zerumbone (1), furanodienone (2), zederone (3), oxycurcumenol epoxide (4), curcumenol (5) and isocurcumenol (6), along with phytosterols stigmasterol and alpha-sitosterol. Compounds 1 and 2 were obtained for the first time for C. ochrorhiza while 4 was new to C. heyneana. The hexane extract of C. ochrorhiza and sesquiterpenes 1 and 3 showed very strong cytotoxicity activity against T-acute lymphoblastic leukaemia cells (CEM-SS), with IC(50) values of 6.0, 0.6 and 1.6 microg mL(-1), respectively. Meanwhile, constituents from C. heyneana (4-6) demonstrated moderate inhibition against CEM-SS in cytotoxic assay, with IC(50) values of 11.9, 12.6 and 13.3 microg mL(-1), respectively. The crude extracts and sesquiterpenes isolated were moderately active against certain bacteria tested in antimicrobial screening.
    Matched MeSH terms: Curcuma/chemistry*
  14. Astuti SD, Mawaddah A, Kusumawati I, Mahmud AF, Nasution AMT, Purwanto B, et al.
    Lasers Med Sci, 2024 Feb 23;39(1):79.
    PMID: 38393433 DOI: 10.1007/s10103-024-04020-3
    The study investigates the effect of diode laser exposure on curcumin's skin penetration, using turmeric extraction as a light-sensitive chemical and various laser light sources. It uses an in vivo skin analysis method on Wistar strain mice. The lasers are utilized at wavelengths of 403 nm, 523 nm, 661 nm, and 979 nm. The energy densities of the lasers are 20.566 J/cm2, 20.572 J/cm2, 21.162 J/cm2, and 21.298 J/cm2, which are comparable to one another. The experimental animals were divided into three groups: base cream (BC), turmeric extract cream (TEC), and the combination laser (L), BC, and TEC treatment group. Combination light source (LS) with cream (C) was performed with 8 combinations namely 523 nm ((L1 + BC) and (L1 + TEC)), 661 nm ((L2 + BC) and (L2 + TEC)), 403 nm ((L3 + BC) and (L3 + TEC)), and 979 nm ((L4 + BC) and (L4 + TEC)). The study involved applying four laser types to cream-covered and turmeric extract-coated rat skin, with samples scored for analysis. The study found that both base cream and curcumin cream had consistent pH values of 7-8, within the skin's range, and curcumin extract cream had lower viscosity. The results of the statistical analysis of Kruskal-Wallis showed a significant value (p  0.05), while the treatment using BC and TEC showed a significant difference (p 
    Matched MeSH terms: Curcuma*
  15. Viswanathan G, Chung LY, Srinivas UK
    Nutr Cancer, 2021;73(9):1780-1791.
    PMID: 32875900 DOI: 10.1080/01635581.2020.1811883
    Curcumin, the yellow pigment derived from turmeric rhizomes, exhibits antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. We have previously reported in a study that curcumin could induce differentiation in embryonal carcinoma cell (EC). EC cells are the primary constituents of teratocarcinoma tumors, and hence differentiating them to a non-proliferative cell type may be useful in anticancer therapies. Here, we conducted a detailed study using various molecular approaches to characterize this differentiation at the cellular and molecular levels. The cells were treated with 20 µM curcumin, which was the optimal concentration to produce the highest amount of differentiated cells. Changes in protein and RNA expression, membrane dynamics, and migration of these cells after treatment with curcumin were then studied in a time-dependent manner. The differentiated cells were morphologically distinct from the precursor cells, and gene expression profiles were altered in curcumin-treated cells. Curcumin promoted cell motility and cell adhesion. Curcumin also induced changes in membrane fluidity and the lateral mobility of lipids in the plasma membrane. The findings of this study suggest that curcumin might have therapeutic potential in differentiation therapy for the treatment of teratocarcinomas or germ cell tumors (GCTs) such as testicular and ovarian GCTs.
    Matched MeSH terms: Curcuma
  16. Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301836.
    PMID: 38253795 DOI: 10.1002/cbdv.202301836
    Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
    Matched MeSH terms: Curcuma
  17. Liew KY, Hafiz MF, Chong YJ, Harith HH, Israf DA, Tham CL
    PMID: 33193799 DOI: 10.1155/2020/8257817
    Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.
    Matched MeSH terms: Curcuma
  18. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
    Matched MeSH terms: Curcuma/microbiology; Curcuma/chemistry*
  19. Taheri S, Abdullah TL, Karimi E, Oskoueian E, Ebrahimi M
    Int J Mol Sci, 2014;15(7):13077-90.
    PMID: 25056545 DOI: 10.3390/ijms150713077
    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.
    Matched MeSH terms: Curcuma/metabolism; Curcuma/chemistry*
  20. Nasai NB, Abba Y, Abdullah FF, Marimuthu M, Tijjani A, Sadiq MA, et al.
    Vet World, 2016 Apr;9(4):417-20.
    PMID: 27182139 DOI: 10.14202/vetworld.2016.417-420
    Gastrointestinal helminthosis is a global problem in small ruminant production. Most parasites have developed resistance to commonly available anthelminthic compounds, and there is currently an increasing need for new compounds with more efficacies. This study evaluated the in vitro effects of ethanolic extract of Curcuma longa (EECL) as a biological nematicide against third stage Haemonchus larvae (L3) isolated from sheep.
    Matched MeSH terms: Curcuma
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links