Displaying publications 1 - 20 of 301 in total

Abstract:
Sort:
  1. Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R
    J Sci Food Agric, 2024 Apr;104(6):3216-3227.
    PMID: 38072678 DOI: 10.1002/jsfa.13208
    BACKGROUND: Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed.

    RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.

    CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Dietary Fiber/analysis
  2. Li Y, Zhang Y, Dong L, Li Y, Liu Y, Liu Y, et al.
    Food Chem, 2024 Mar 30;437(Pt 1):137834.
    PMID: 37897817 DOI: 10.1016/j.foodchem.2023.137834
    In this study, strains producing feruloyl esterase were screened by Oxford Cup clear zones method and by evaluating the ability to decompose hydroxycinnamoyl esters. The strain was identified by 16S rDNA molecular biology. The contents of dietary fiber, reducing sugar, water-extractable arabinoxylans, phytic acid, total phenolics, total flavonoid, phenolic compounds composition, microstructure and antioxidant activity in bran before and after fermentation were studied. Eight strains producing feruloyl esterase were screened, among which strain P1 had the strongest ability to decompose hydroxycinnamoyl esters. The strain was identified and named L. fermentum NB02. Compared with unfermented bran, fermented bran exhibited higher contents of soluble dietary fiber, reducing sugar, water-extractable arabinoxylans, total phenolics, total flavonoid, and lower insoluble dietary fiber and phytic acid content. The dense surface structure of bran was destroyed, forming a porous structure. The release of phenolic compounds increased significantly. L. fermentum NB02 fermentation improved the antioxidant capacity of bran.
    Matched MeSH terms: Dietary Fiber
  3. Sujithra S, Arthanareeswaran G, Ismail AF, Taweepreda W
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128255.
    PMID: 37984576 DOI: 10.1016/j.ijbiomac.2023.128255
    β-glucans are soluble fibers found in cereal compounds, including barley, oats etc., as an active component. They are used as a dietary fiber to treat cholesterol, diabetes and cardiovascular diseases. These polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in human like inhibiting tumour growth, anti-inflammatory action, etc. All these activities were usually attached to their molecular weight, structure and degree of branching. The present manuscript reviews the background of β-glucan, its characterization techniques, the possible ways to extract β-glucan and mainly focuses on membrane-based purification techniques. The β-glucan separation methods using polymeric membranes, their operational characteristics, purification methods which may yield pure or crude β-glucan and structural analysis methods were also discussed. Future direction in research and development related to β-glucan recovery from cereal were also offered.
    Matched MeSH terms: Dietary Fiber/analysis
  4. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
    Matched MeSH terms: Dietary Fiber/pharmacology
  5. Ching YK, Chin YS, Appukutty M, Chan YM, Lim PY, Nasir KH
    Asia Pac J Clin Nutr, 2023;32(1):168-182.
    PMID: 36997497 DOI: 10.6133/apjcn.202303_32(1).0020
    BACKGROUND AND OBJECTIVES: Evidence for gene-diet interactions is lacking among individuals with specific dietary practices including vegetarians. This study aimed to determine the interactions of rs174547 in the fatty acid desaturase 1 (FADS1) gene with macronutrient such as carbohydrate (particularly fibre), protein and fat intakes on abdominal obesity among middle-aged Malaysian vegetarians of Chinese and Indian ethnicity.

    METHODS AND STUDY DESIGN: The present cross-sectional study was conducted among 163 vegetarians in Kuala Lumpur and Selangor, Malaysia. Dietary intakes of vegetarians were assessed by using a food frequency questionnaire. Waist circumference of vegetarians was measured by using a Lufkin tape W606PM. Genotypes of the rs174547 of vegetarians were determined by using Agena® MassARRAY. A multiple logistic regression model was used to determine the interactions of the rs174547 with macronutrient on abdominal obesity.

    RESULTS: About 1 in 2 vegetarians (51.5%) had abdominal obesity. Individuals with CT and TT genotype at T3 intake of carbohydrates, protein, fat and fibre as well as individuals with TT genotype at T2 intake of carbohydrates and protein had higher odds of abdominal obesity (pinteration <0.05). The gene-diet interaction remained significant for fibre intake (OR: 4.71, 95% CI: 1.25-17.74, pinteraction=0.022) among vegetarians with TT genotype at T2 intake of fibre after adjusting for age and sex and considering the effects of ethnicity and food groups.

    CONCLUSIONS: The rs174547 significantly interacted with fibre intake on abdominal obesity. A specific dietary fibre recommendation based on genetics is needed among Chinese and Indian middle-aged vegetarians.

    Matched MeSH terms: Dietary Fiber
  6. Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, et al.
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1587-1599.
    PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221
    Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
    Matched MeSH terms: Dietary Fiber
  7. Bongiovanni T, Yin MOL, Heaney L
    Int J Sports Med, 2021 Dec;42(13):1143-1158.
    PMID: 34256388 DOI: 10.1055/a-1524-2095
    Short-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete's immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.
    Matched MeSH terms: Dietary Fiber
  8. Shahril MR, Zakarai NS, Appannah G, Nurnazahiah A, Mohamed HJJ, Ahmad A, et al.
    Nutrients, 2021 Sep 24;13(10).
    PMID: 34684340 DOI: 10.3390/nu13103339
    Dietary pattern (DP) and its relationship with disease biomarkers have received recognition in nutritional epidemiology investigations. However, DP relationships with adipokines (i.e., adiponectin and leptin) among breast cancer survivors remain unclear. Therefore, we assessed relationships between DP and high-molecular weight (HMW) adiponectin and leptin concentration among breast cancer survivors. This cross-sectional study involved 128 breast cancer survivors who attended the oncology outpatient clinic at two main government hospitals in the East Coast of Peninsular Malaysia. The serum concentration of HMW adiponectin and leptin were measured using enzyme-linked immunosorbent assay (ELISA) kits. A reduced rank regression method was used to analyze DP. Relationships between DP with HMW adiponectin and leptin were examined using regression models. The findings show that with every 1-unit increase in the 'energy-dense, high-SFA, low-fiber' DP z-score, there was a reduction by 0.41 μg/mL in HMW adiponectin which was independent of age, BMI, education level, occupation status, cancer stage, and duration since diagnosis. A similar relationship with leptin concentration was not observed. In conclusion, the 'energy-dense, high-saturated fat and low-fiber' DP, which is characterized by high intake levels of sugar-sweetened drinks and fat-based spreads but low intake of fruits and vegetables, is an unhealthy dietary pattern and unfavorable for HMW adiponectin concentration, but not for leptin. These findings could serve as a basis in developing specific preventive strategies that are tailored to the growing population of breast cancer survivors.
    Matched MeSH terms: Dietary Fiber/pharmacology*
  9. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Dietary Fiber
  10. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Dietary Fiber/analysis*
  11. Syarifah SM, Mohd Kassim AS, Mohd Aripin A, Chan CM, Zainulabidin MH, Ishak N, et al.
    Data Brief, 2021 Jun;36:107030.
    PMID: 34026964 DOI: 10.1016/j.dib.2021.107030
    This article presents experimental data on oil palm biomass (oil palm leaves, oil palm trunk and empty fruit bunch) handsheet production characterization by biodelignification treatment using Bacillus cereus extracted from termite gut (Coptotermus curvignathus). It associates the lignocellulose chemical composition obtained via technical association pulp and paper industry TAPPI T 222 om-02 testing on lignin content reduction determination, holocellulose and hemicellulose content determination (Kurscher-Hoffner method). Several data obtained for handsheet characterization presents brightness, opacity, contrast ratio, din transparency, thickness, bursting and tearing indexes are collected. Handsheet surface morphology was also observed on ratio of gaps differences between fiber bonding conducted using scanning electron microscope (SEM) and ImageJ software. The raw data findings supplement chemical composition analysis for both untreated and treated substrates on handsheet quality performance check as presented in the research article "Bio-Mechanical Pulping of Bacteria Pre-Treatment on Oil Palm Biomass for Handsheet Production" [1]. For understanding correlations into the difference among lignocellulose content composition which affect the handsheet formation and mechanical strength refer to article from this research [1]. This dataset is made publicly available for optimizing alternative waste material reuse in the pulp and paper industrial section.
    Matched MeSH terms: Dietary Fiber
  12. Khodavandi A, Alizadeh F, Razis AFA
    Eur J Nutr, 2021 Jun;60(4):1707-1736.
    PMID: 32661683 DOI: 10.1007/s00394-020-02332-y
    PURPOSE: It is unclear how dietary intake influences the ovarian cancer. The present paper sets out to systematically review and meta-analyze research on dietary intake to identify cases having high- or low-risk ovarian cancer.

    METHODS: Scopus, PubMed, and Wiley Online Libraries were searched up to the date November 24, 2019. Two reviewers were requested to independently extract study characteristics and to assess the bias and applicability risks with reference to the study inclusion criteria. Meta-analyses were performed to specify the relationship between dietary intake and the risk of ovarian cancer identifying 97 cohort studies.

    RESULTS: No significant association was found between dietary intake and risk of ovarian cancer. The results of subgroup analyses indicated that green leafy vegetables (RR = 0.91, 95%, 0.85-0.98), allium vegetables (RR = 0.79, 95% CI 0.64-0.96), fiber (RR = 0.89, 95% CI 0.81-0.98), flavonoids (RR = 0.83, 95% CI 0.78-0.89) and green tea (RR = 0.61, 95% CI 0.49-0.76) intake could significantly reduce ovarian cancer risk. Total fat (RR = 1.10, 95% CI 1.02-1.18), saturated fat (RR = 1.11, 95% CI 1.01-1.22), saturated fatty acid (RR = 1.19, 95% CI 1.04-1.36), cholesterol (RR = 1.13, 95% CI 1.04-1.22) and retinol (RR = 1.14, 95% CI 1.00-1.30) intake could significantly increase ovarian cancer risk. In addition, acrylamide, nitrate, water disinfectants and polychlorinated biphenyls were significantly associated with an increased risk of ovarian cancer.

    CONCLUSION: These results could support recommendations to green leafy vegetables, allium vegetables, fiber, flavonoids and green tea intake for ovarian cancer prevention.

    Matched MeSH terms: Dietary Fiber
  13. Snelson M, R Muralitharan R, Dinakis E, Nakai M, Jama HA, Shihata WA, et al.
    Hypertension, 2021 06;77(6):e53-e55.
    PMID: 33866801 DOI: 10.1161/HYPERTENSIONAHA.121.17039
    Matched MeSH terms: Dietary Fiber*
  14. Suriani MJ, Zainudin HA, Ilyas RA, Petrů M, Sapuan SM, Ruzaidi CM, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068794 DOI: 10.3390/polym13091532
    The application of natural fibers is rapidly growing in many sectors, such as construction, automobile, and furniture. Kenaf fiber (KF) is a natural fiber that is in demand owing to its eco-friendly and renewable nature. Nowadays, there are various new applications for kenaf, such as in absorbents and building materials. It also has commercial applications, such as in the automotive industry. Magnesium hydroxide (Mg(OH)2) is used as a fire retardant as it is low in cost and has good flame retardancy, while polyester yarn (PET) has high tensile strength. The aim of this study was to determine the horizontal burning rate, tensile strength, and surface morphology of kenaf fiber/PET yarn reinforced epoxy fire retardant composites. The composites were prepared by hybridized epoxy and Mg(OH)2 PET with different amounts of KF content (0%, 20%, 35%, and 50%) using the cold press method. The specimen with 35% KF (epoxy/PET/KF-35) displayed better flammability properties and had the lowest average burning rate of 14.55 mm/min, while epoxy/PET/KF-50 with 50% KF had the highest tensile strength of all the samples. This was due to fewer defects being detected on the surface morphology of epoxy/PET/KF-35 compared to the other samples, which influenced the mechanical properties of the composites.
    Matched MeSH terms: Dietary Fiber
  15. Jumaidin R, Diah NA, Ilyas RA, Alamjuri RH, Yusof FAM
    Polymers (Basel), 2021 Apr 28;13(9).
    PMID: 33924842 DOI: 10.3390/polym13091420
    Increasing environmental concerns have led to greater attention to the development of biodegradable materials. The aim of this paper is to investigate the effect of banana leaf fibre (BLF) on the thermal and mechanical properties of thermoplastic cassava starch (TPCS). The biocomposites were prepared by incorporating 10 to 50 wt.% BLF into the TPCS matrix. The samples were characterised for their thermal and mechanical properties. The results showed that there were significant increments in the tensile and flexural properties of the materials, with the highest strength and modulus values obtained at 40 wt.% BLF content. Thermogravimetric analysis showed that the addition of BLF had increased the thermal stability of the material, indicated by higher-onset decomposition temperature and ash content. Morphological studies through scanning electron microscopy (SEM) exhibited a homogenous distribution of fibres and matrix with good adhesion, which is crucial in improving the mechanical properties of biocomposites. This was also attributed to the strong interaction of intermolecular hydrogen bonds between TPCS and fibre, proven by the FT-IR test that observed the presence of O-H bonding in the biocomposite.
    Matched MeSH terms: Dietary Fiber
  16. Lee CH, Padzil FNBM, Lee SH, Ainun ZMA, Abdullah LC
    Polymers (Basel), 2021 Apr 27;13(9).
    PMID: 33925266 DOI: 10.3390/polym13091407
    In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.
    Matched MeSH terms: Dietary Fiber
  17. Diyana ZN, Jumaidin R, Selamat MZ, Ghazali I, Julmohammad N, Huda N, et al.
    Polymers (Basel), 2021 Apr 26;13(9).
    PMID: 33925897 DOI: 10.3390/polym13091396
    Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.
    Matched MeSH terms: Dietary Fiber
  18. Isah BW, Mohamad H
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922008 DOI: 10.3390/s21092926
    The paper explores the possibility of using high-resolution fiber Bragg grating (FBG) sensing technology for on-specimen strain measurement in the laboratory. The approach provides a means to assess the surface deformation of the specimen, both the axial and radial, through a chain of FBG sensor (C-FBG), in a basic setup of a uniaxial compression test. The method is cost-effective, straightforward and can be commercialized. Two C-FBG; one was applied directly to the sample (FBGBare), and the other was packaged (FBGPack) for ease of application. The approach measures the local strain with high-resolution and accuracy levels that match up to the existing local strain measuring sensors. The approach enables the evaluation of small-strain properties of the specimen intelligently. The finite element model analysis deployed has proven the adaptability of the technique for measuring material deformation. The adhesive thickness and packaging technique have been shown to influence the sensitivity of the FBG sensors. Owing to the relative ease and low-cost of instrumentation, the suggested method has a great potential to be routinely applied for elemental testing in the laboratory.
    Matched MeSH terms: Dietary Fiber
  19. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI
    Foods, 2021 Mar 23;10(3).
    PMID: 33807100 DOI: 10.3390/foods10030689
    Morus alba L. (M. alba) is a highly adaptable plant that is extensively incorporated in many traditional and Ayurveda medications. Various parts of the plant, such as leaves, fruits, and seeds, possess nutritional and medicinal value. M. alba has abundant phytochemicals, including phenolic acids, flavonoids, flavonols, anthocyanins, macronutrients, vitamins, minerals, and volatile aromatic compounds, indicating its excellent pharmacological abilities. M. alba also contains high nutraceutical values for protein, carbohydrates, fiber, organic acids, vitamins, and minerals, as well as a low lipid value. However, despite its excellent biological properties and nutritional value, M. alba has not been fully considered as a potential functional food ingredient. Therefore, this review reports on the nutrients and bioactive compounds available in M. alba leaves, fruit, and seeds; its nutraceutical properties, functional properties as an ingredient in foodstuffs, and a microencapsulation technique to enhance polyphenol stability. Finally, as scaling up to a bigger production plant is needed to accommodate industrial demand, the study and limitation on an M. alba upscaling process is reviewed.
    Matched MeSH terms: Dietary Fiber
  20. Masoud F, Sapuan SM, Ariffin MKAM, Nukman Y, Bayraktar E
    Polymers (Basel), 2021 Feb 26;13(5).
    PMID: 33652612 DOI: 10.3390/polym13050706
    In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi's method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter's contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.
    Matched MeSH terms: Dietary Fiber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links