Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Alu'datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, et al.
    J Food Sci, 2024 Apr;89(4):1835-1864.
    PMID: 38407443 DOI: 10.1111/1750-3841.16970
    Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
    Matched MeSH terms: Functional Food
  2. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    Matched MeSH terms: Functional Food
  3. Jin Y, Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2021 Dec 03;70(12):1749-1759.
    PMID: 34759114 DOI: 10.5650/jos.ess21215
    Refined red palm-pressed mesocarp olein (PPMO) is recovered from palm-pressed mesocarp fiber, which is a by-product from palm oil mill. Its utilization in food industry is extremely limited even though it contains various phytonutrients. Thus, this study aimed to evaluate its toxicity effects by using the male Sprague-Dawley rat model. The rats were administered with a single dose of 2 g/kg PPMO in an acute toxicity study while administered with 2, 1, or 0.5 g/kg PPMO daily for 28 days in a sub-chronic toxicity study. The mortality, oral LD50 value, clinical observation, body and organ weight, hematological and biochemical analyses, pathological and histopathological examinations were assessed. The overall outcomes indicated that PPMO is non-toxic up to 2 g/kg and considered safe to be used in food application, especially as functional food ingredient and supplement attributed to its phytonutrients. Besides, this study provides an insight in alternative utilization of the wastes from palm oil mill.
    Matched MeSH terms: Functional Food
  4. Afroz S, Fairuz S, Joty JA, Uddin MN, Rahman MA
    J Food Biochem, 2021 12;45(12):e13961.
    PMID: 34676581 DOI: 10.1111/jfbc.13961
    COVID-19 has become the focal point since 2019 after the outbreak of coronavirus disease. Many drugs are being tested and used to treat coronavirus infections; different kinds of vaccines are also introduced as preventive measure. Alternative therapeutics are as well incorporated into the health guidelines of some countries. This research aimed to look into the underlying mechanisms of functional foods and how they may improve the long-term post COVID-19 cardiovascular, diabetic, and respiratory complications through their bioactive compounds. The potentiality of nine functional foods for post COVID-19 complications was investigated through computational approaches. A total of 266 bioactive compounds of these foods were searched via extensive literature reviewing. Three highly associated targets namely troponin I interacting kinase (TNNI3K), dipeptidyl peptidase 4 (DPP-4), and transforming growth factor beta 1 (TGF-β1) were selected for cardiovascular, diabetes, and respiratory disorders, respectively, after COVID-19 infections. Best docked compounds were further analyzed by network pharmacological tools to explore their interactions with complication-related genes (MAPK1 and HSP90AA1 for cardiovascular, PPARG and TNF-alpha for diabetes, and AKT-1 for respiratory disorders). Seventy-one suggested compounds out of one-hundred and thirty-nine (139) docked compounds in network pharmacology recommended 169 Gene Ontology (GO) items and 99 Kyoto Encyclopedia of Genes and Genomes signaling pathways preferably AKT signaling pathway, MAPK signaling pathway, ACE2 receptor signaling pathway, insulin signaling pathway, and PPAR signaling pathway. Among the chosen functional foods, black cumin, fenugreek, garlic, ginger, turmeric, bitter melon, and Indian pennywort were found to modulate the actions. Results demonstrate that aforesaid functional foods have attenuating roles to manage post COVID-19 complications. PRACTICAL APPLICATIONS: Functional foods have been approaching a greater interest due to their medicinal uses other than gastronomic pleasure. Nine functional food resources have been used in this research for their traditional and ethnopharmacological uses, but their directive-role in modulating the genes involved in the management of post COVID-19 complications is inadequately studied and reported. Therefore, the foods types used in this research may be prioritized to be used as functional foods for ameliorating the major post COVID-19 complications through appropriate science.
    Matched MeSH terms: Functional Food
  5. Jeyaraj EJ, Lim YY, Choo WS
    J Food Sci Technol, 2021 Jun;58(6):2054-2067.
    PMID: 33967304 DOI: 10.1007/s13197-020-04745-3
    Clitoria ternatea or commonly known as 'Butterfly pea' has been used traditionally in Ayurvedic medicine in which various parts of the plants are used to treat health issues such as indigestion, constipation, arthritis, skin diseases, liver and intestinal problems. The flowers of C. ternatea are used worldwide as ornamental flowers and traditionally used as a food colorant. This paper reviews the recent advances in the extraction and biological activities of phytochemicals from C. ternatea flowers. The application of maceration or ultrasound assisted extraction greatly increased the yield (16-247% of increase) of phytochemicals from C. ternatea flowers. Various phytochemicals such as kaempferol, quercetin and myricetin glycosides as well as anthocyanins have been isolated from C. ternatea flowers. Clitoria ternatea flower extracts were found to possess antimicrobial, antioxidant, anti-inflammatory, cytotoxic and antidiabetic activities which are beneficial to human health. Clitoria ternatea flower is a promising candidate for functional food applications owing to its wide range of pharmacotherapeutic properties as well as its safety and effectiveness.
    Matched MeSH terms: Functional Food
  6. Azizi NF, Kumar MR, Yeap SK, Abdullah JO, Khalid M, Omar AR, et al.
    Foods, 2021 May 27;10(6).
    PMID: 34071977 DOI: 10.3390/foods10061210
    Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir's nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
    Matched MeSH terms: Functional Food
  7. Cao W, Chen X, Chin Y, Zheng J, Lim PE, Xue C, et al.
    J Food Biochem, 2021 Apr 04.
    PMID: 33817806 DOI: 10.1111/jfbc.13686
    Natural compounds have tremendous potential to regulate glucose metabolism, but conventional methods for studying their bioactivities are usually labor intensive. Here, hypoglycemic properties in 22 selected food-derived compounds were examined using molecular docking. The results indicated that curcumin is an inhibitor of both α-glucosidase and dipeptidyl-peptidase 4 (DPP-4), which are important for glycemic control. These effects of curcumin were also confirmed by enzymatic determination in vitro. Furthermore, curcumin significantly improved diet-induced hyperglycemia (e.g., fasting plasma glucose levels and glycogen storage in muscle or liver) in mice. This might be attributed to its inhibitory effects on the activities of α-glucosidase and DPP-4 in vivo. Curcumin also upregulated the expression of genes (e.g., glucagon-like peptide 1) related to DPP-4 activity in the small intestine. In conclusion, curcumin is a potential ingredient of functional foods used for diet-induced hyperglycemia management. PRACTICAL APPLICATIONS: Curcumin has been widely used as a colorant in the food industry. Moreover, a growing number of studies have described its diverse biological functions, such as anti-inflammatory, anti-oxidant, and anti-angiogenic activities. Thus, curcumin is regarded as a potential ingredient in functional foods. Our results highlighted the hyperglycemic effect of curcumin, suggesting that curcumin may be included in food products for hyperglycemic patients.
    Matched MeSH terms: Functional Food
  8. Tan ML, Hamid SBS
    J Cancer Prev, 2021 Mar 30;26(1):1-17.
    PMID: 33842401 DOI: 10.15430/JCP.2021.26.1.1
    Patients with cancer are prone to several debilitating side effects including fatigue, insomnia, depression and cognitive disturbances. Beetroot (Beta vulgaris L.) as a health promoting functional food may be potentially beneficial in cancer. As a source of polyphenols, flavonoids, dietary nitrates and other useful nutrients, beetroot supplementation may provide a holistic means to prevent cancer and manage undesired effects associated with chemotherapy. The main aim of this narrative review is to discuss beetroot's nutrient composition, current studies on its potential utility in chemoprevention and cancer-related fatigue or treatment-related side effects such as cardiotoxicity. This review aims to provide the current status of knowledge and to identify the related research gaps in this area. The flavonoids and polyphenolic components present in abundance in beetroot support its significant antioxidant and anti-inflammatory capacities. Most in vitro and in vivo studies have shown promising results; however, the molecular mechanisms underlying chemopreventive and chemoprotective effects of beetroot have not been completely elucidated. Although recent clinical trials have shown that beetroot supplementation improves human performance, translational studies on beetroot and its functional benefits in managing fatigue or other symptoms in patients with cancer are still lacking.
    Matched MeSH terms: Functional Food
  9. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Zakaria ZA, et al.
    BMC Complement Med Ther, 2021 Jan 14;21(1):30.
    PMID: 33441127 DOI: 10.1186/s12906-020-03170-5
    Inflammation is the main key role in developing chronic diseases including cancer, cardiovascular diseases, diabetes, arthritis, and neurodegenerative diseases which possess a huge challenge for treatment. With massively compelling evidence of the role played by nutritional modulation in preventing inflammation-related diseases, there is a growing interest into the search for natural functional foods with therapeutic and preventive actions. Honey, a nutritional healthy product, is produced mainly by two types of bees: honeybee and stingless bee. Since both types of honey possess distinctive phenolic and flavonoid compounds, there is recently an intensive interest in their biological and clinical actions against inflammation-mediated chronic diseases. This review shed the light specifically on the bioavailability and bioaccessibility of honey polyphenols and highlight their roles in targeting inflammatory pathways in gastrointestinal tract disorders, edema, cancer, metabolic and cardiovascular diseases and gut microbiota.
    Matched MeSH terms: Functional Food*
  10. Permatasari HK, Nurkolis F, Vivo CD, Noor SL, Rahmawati R, Radu S, et al.
    F1000Res, 2021;10:789.
    PMID: 36237995 DOI: 10.12688/f1000research.55307.3
    Background: This study aimed to determine the potential anti-aging effects of sea grapes and tempe (fermented soybeans) collagen particle size, by measuring the activities of anti-glycation, antioxidant, and tyrosinase inhibitors. Methods: Collagen was isolated from freeze-dried sea grapes and tempe powder and treated with different NaOH concentrations (0.10 M; 0.20 M; 0.30 M), and CH 3COOH 1 M solution, separately. The collagen particle size was adjusted by stirring at 1000 rpm for 5 and 10 hours. 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used to measure the antioxidant activity, and L-tyrosine and L-DOPA (l-3,4-dihydroxyphenylalanine) was used as a marker of tyrosine inhibition.  Results:  The collagen treated with 0.10 M NaOH produced the highest collagen yield (11.65%), and the largest particle size (2455 nm). Additionally, this collagen, when treated for 5 hours, exhibited 24.70% antioxidant activity, 62.60% anti-glycation, 8.97% L-tyrosine, and 26.77% L-Dopa inhibition activities. Meanwhile, the collagen treated for 10 hours had a 9.98% antioxidant activity, 41.48% anti-glycation, 7.89% L-tyrosine, and 2.67% L-Dopa inhibition activity.  Conclusion: Sea grapes and tempe collagen powder treated with 0.10 M NaOH and stirred for 5 hours, possess the best potential anti-aging properties as a functional food.
    Matched MeSH terms: Functional Food
  11. Khalaf AT, Wei Y, Alneamah SJA, Al-Shawi SG, Kadir SYA, Zainol J, et al.
    Biomed Res Int, 2021;2021:8823222.
    PMID: 33681381 DOI: 10.1155/2021/8823222
    Nutraceuticals have taken on considerable significance due to their supposed safety and possible nutritional and medicinal effects. Pharmaceutical and dietary companies are conscious of monetary success, which benefits healthier consumers and the altering trends that result in these heart-oriented value-added products being proliferated. Numerous nutraceuticals are claimed to have multiple therapeutic benefits despite advantages, and unwanted effects encompass a lack of substantial evidence. Several common nutraceuticals involve glucosamine, omega-3, Echinacea, cod liver oil, folic acid, ginseng, orange juice supplemented with calcium, and green tea. This review is dedicated to improving the understanding of nutrients based on specific illness indications. It was reported that functional foods contain physiologically active components that confer various health benefits. Studies have shown that some foods and dietary patterns play a major role in the primary prevention of many ailment conditions that lead to putative functional foods being identified. Research and studies are needed to support the possible health benefits of different functional foods that have not yet been clinically validated for the relationships between diet and health. The term "functional foods" may additionally involve health/functional health foods, foods enriched with vitamins/minerals, nutritional improvements, or even conventional medicines.
    Matched MeSH terms: Functional Food*
  12. Rosli NHM, Yahya HM, Ibrahim FW, Shahar S, Ismail IS, Azam AA, et al.
    Nutrients, 2020 Dec 12;12(12).
    PMID: 33322743 DOI: 10.3390/nu12123812
    Functional foods such as pomegranate, dates and honey were shown by various previous studies to individually have a neuroprotective effect, especially in neurodegenerative disease such as Alzheimer's disease (AD). In this novel and original study, an 1H NMR spectroscopy tool was used to identify the metabolic neuroprotective mechanism of commercially mixed functional foods (MFF) consisting of pomegranate, dates and honey, in rats injected with amyloid-beta 1-42 (Aβ-42). Forty-five male albino Wistar rats were randomly divided into five groups: NC (0.9% normal saline treatment + phosphate buffer solution (PBS) solution injection), Abeta (0.9% normal saline treatment + 0.2 µg/µL Aβ-42 injection), MFF (4 mL/kg MFF treatment + PBS solution injection), Abeta-MFF (4 mL/kg MFF treatment + 0.2 µg/µL Aβ-42 injection) and Abeta-NAC (150 mg/kg N-acetylcysteine + 0.2 µg/µL Aβ-42 injection). Based on the results, the MFF and NAC treatment improved the spatial memory and learning using Y-maze. In the metabolic analysis, a total of 12 metabolites were identified, for which levels changed significantly among the treatment groups. Systematic metabolic pathway analysis found that the MFF and NAC treatments provided a neuroprotective effect in Aβ-42 injected rats by improving the acid amino and energy metabolisms. Overall, this finding showed that MFF might serve as a potential neuroprotective functional food for the prevention of AD.
    Matched MeSH terms: Functional Food*
  13. Younas A, Naqvi SA, Khan MR, Shabbir MA, Jatoi MA, Anwar F, et al.
    J Food Biochem, 2020 09;44(9):e13332.
    PMID: 32588917 DOI: 10.1111/jfbc.13332
    Date palm counts among the oldest fruit crops of the world and is mainly cultivated for its highly nutritious fruits consumed as a staple food in many countries, especially in the Gulf region. Dates are enriched with numerous therapeutic bioactives and functional compounds such as phenolics, flavonols, carotenoids, minerals, and vitamins that not only provide an appreciable amount of energy required for the human body but also act as an effective therapeutic agent against several diseases. This review aimed to provide a deep insight into the nutritional as well as phytochemicals profile of date fruit and its seeds in order to explore their biological (anti-cancer, anti-diabetic, cardio-protective, anti-inflammatory properties), functional food, and nutra-pharmaceutical attributes. PRACTICAL APPLICATIONS: This review provides updated information regarding the date fruits and seeds phytochemicals composition together with highlighting dates potential as a natural therapeutic agent against several diseases. The study also urges the importance of consuming dates as a great package to live a healthy life due to the functional food and nutraceutical properties of this valuable fruit. The study also provides information first time as recommending dates to cope with the hidden hunger or micronutrient deficiency faced by the third world inhabitants. Hence, the review may further help the industry and researchers to explore the potential of dates for future medicinal and nutra-pharmaceutical applications.
    Matched MeSH terms: Functional Food
  14. Mohammed NK, Tan CP, Manap YA, Muhialdin BJ, Hussin ASM
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858785 DOI: 10.3390/molecules25173873
    The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.
    Matched MeSH terms: Functional Food*
  15. Mohamed DA, Sazili AQ, Teck Chwen L, Samsudin AA
    Animals (Basel), 2020 Jun 04;10(6).
    PMID: 32512947 DOI: 10.3390/ani10060981
    Selenium (Se) is able to transform from inorganic to organic forms via many bacterial species. This feature is being considered for delivering more bioavailable selenium compounds such as selenocysteine and selenomethionine for human and animal diet. This study investigated the effects of bacterial selenoprotein versus inorganic Se on the carcass characteristics, breast meat selenium content, antioxidant status, and meat quality of broiler chickens. One hundred and eighty chicks were randomly allotted to five treatments of a basal diet supplemented with no Se, sodium selenite, Enterobactercloacae Selenium (ADS1-Se), Klebsiellapneumoniae-Selenium (ADS2-Se), and Stenotrophomonasmaltophilia-Selenium (ADS18-Se). The results showed that bacterial selenoprotein has the ability to deposit more Se in the breast meat compared to sodium selenite. Both Se sources reduced breast meat drip loss, cooking loss, shear force, and 2-thiobarbituric acid reactive substances (TBARS) significantly. It also increased total antioxidant (TAC) and glutathione peroxidase (GSH-Px) in comparison with the negative control. The highest activity of (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) was found in bacterial selenoprotein. In conclusion, bacterial selenoprotein is more efficient than sodium selenite in increasing the breast meat Se deposition and oxidative capacity of broiler chickens. Therefore, it can be effectively used to produce Se-rich meat as a functional food.
    Matched MeSH terms: Functional Food
  16. Azizan A, Xin LA, Abdul Hamid NA, Maulidiani M, Mediani A, Abdul Ghafar SZ, et al.
    Foods, 2020 Feb 11;9(2).
    PMID: 32053982 DOI: 10.3390/foods9020173
    Pineapple (Ananascomosus) waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications. This study strives to characterize the complete metabolite profiles of a variety of MD2 pineapple waste extracts. Metabolomics strategies were utilized to identify bioactive metabolites of this variety prepared with different solvent ratios. Each pineapple waste extract was first screened for total phenolic content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, nitric oxide scavenging, and α-glucosidase inhibitory activities. The highest TPC was found in all samples of the peel, crown, and core extracted using a 50% ethanol ratio, even though the results were fairly significant than those obtained for other ethanol ratios. Additionally, crown extracted with a 100% ethanol ratio demonstrated the highest potency in DPPH and NO scavenging activity, with IC50 values of 296.31 and 338.52 µg/mL, respectively. Peel extracted with 100% ethanol exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 92.95 µg/mL. Then, the extracts were analyzed and the data from 1H NMR were processed using multivariate data analysis. A partial least squares and correlogram plot suggested that 3-methylglutaric acid, threonine, valine, and α-linolenic acid were the main contributors to the antioxidant activities, whereas epicatechin was responsible for the α-glucosidase inhibitory activity. Relative quantification further supported that 100% crown extract was among the extracts that possessed the most abundant potential metabolites. The present study demonstrated that the crown and peel parts of MD2 pineapple extracted with 100% ethanol are potentially natural sources of antioxidants and α-glucosidase inhibitors, respectively.
    Matched MeSH terms: Functional Food
  17. Zarrabi A, Alipoor Amro Abadi M, Khorasani S, Mohammadabadi MR, Jamshidi A, Torkaman S, et al.
    Molecules, 2020 Feb 01;25(3).
    PMID: 32024189 DOI: 10.3390/molecules25030638
    Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
    Matched MeSH terms: Functional Food
  18. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
    Matched MeSH terms: Functional Food*
  19. Hanini ‘Aina, Nik Nur Shamiha Nik Dzulkefli, Mohamed Rasny, Samer Al-Dhalli, Mohd Nizam, Eddy Yusuf, et al.
    MyJurnal
    The composition of ophthalmic preparation is administered topically to the eye in the form of a solution, suspension, ointment, gel or foam for the purpose of treating eye disease. Virgin Coconut Oil (VCO) has been one of the desired ingredients of choice, as its benefits as functional food oil is known among the public. The uniqueness of coconut oil is its fats and oils that contain the highest percentage of medium-chain fatty acids (MCFA), which have antimicrobial properties, such as lauric acid and capric acid. This study aimed to evaluate the antimicrobial effects of eye drop containing a different VCO concentration using the Kirby-Bauer test. The formulation of eye drop had 1.5%, 2% and 3% amount of virgin coconut oil, which was later added with all basic materials needed for eye drop. The samples were evaluated for its zone of inhibition (ZOI). The antimicrobial effects of eye drop formulation that contains 3% of VCO (F3) against Streptococcus pneumonia were similar with all control products (Eye Glo, Pred Forte, Cationorm), and antimicrobial effects of F3 against Staphylococcus aureus are better than Cationorm. It is noticeable that the higher the VCO content in the formulation, the better the antimicrobial effects of the eye drop. In conclusion, VCO possesses moisture, anti-inflammation, better anti-microbial properties, and it could be further formulated as a stable eye drop emulsion.
    Matched MeSH terms: Functional Food
  20. Kong, C. K., Tan, Y. N., Chye, F. Y., Sit, N. W.
    MyJurnal
    The edible shoots of Dendrocalamus asper (family Poaceae) is an underutilised food. The
    present work was conducted to evaluate the nutritional compositions, biological activities, and
    phytochemical contents of the shoots of D. asper obtained from different regions of Malaysia,
    Peninsular (DP) and East Malaysia (DS). The nutritional analysis was conducted using the
    Official Methods of Analysis of the AOAC International. All minerals were quantified using
    an inductively coupled plasma-mass spectrometer, except for potassium which was measured
    using a flame atomic absorption spectrometer. Total phenolic content (TPC) was determined
    using the Folin-Ciocalteu method. Antibacterial and antifungal activities were assayed using
    a colourimetric broth microdilution method, while antioxidant activity was tested using DPPH
    radical scavenging activity, ferric-reducing antioxidant power, and cellular antioxidant activity (CAA) assays. Enzyme inhibitory activities were examined using α-amylase and α-glucosidase. Both bamboo shoots (boiled at 100°C for 20 min) were high in moisture (> 93 g/100 g
    FW), crude protein (> 21 g/100 g DW), and crude fibre contents (> 9 g/100 g DW), but low in
    fat content (< 4 g/100 g DW). Potassium was the most abundant mineral at 205.67 and 203.83
    µg/100 g DW of bamboo shoots of DP and DS, respectively. The extracts (hexane, ethyl
    acetate, ethanol, and water) of both shoots showed stronger antifungal activity than antibacterial activity against selected human pathogens. All extracts of DP shoots demonstrated higher
    CAA in HeLa cells and α-amylase inhibitory activity than that of DS shoots. In contrast, the
    extracts of DS shoots exhibited stronger inhibition on α-glucosidase and contained higher
    TPC than that of DP shoots. The D. asper shoots obtained from the Peninsular Malaysia and
    East Malaysia contained different types of secondary metabolites which account for the differences in the biological activities. In conclusion, D. asper shoots have potential as a nutritional
    and functional food.
    Matched MeSH terms: Functional Food
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links