Experimental: In this study, the suitability of PHWE for extracting bioactive compounds such as phenolics, hydrolysable tannins and flavonoids from Phyllanthus tenellus was investigated by UPLC-qTOF-MS.
Results: Solvent properties of water are significantly increased through imposing temperature at 121 °C and pressure at 15 p.s.i. Pressurized hot water extraction obtained 991-folds higher hydrolysable tannins than methanol extraction.
Conclusion: The extraction yields of hydrolysable tannins with PHWE was almost double of absolute methanol extraction.
METHODS: MetS was induced in Sprague Dawley rats on an HFD, followed by a daily oral gavage of geraniin (25 mg/kg) for 4 wk. The outcomes of geraniin-treated rats were compared with those of untreated rats on either a control diet or an HFD and with rats with MetS treated with metformin on a daily basis (200 mg/kg).
RESULTS: The supplementation of geraniin ameliorated multiple metabolic abnormalities caused by HFD, including hypertension, impaired glucose and lipid metabolism, ectopic fat deposition in the visceral fat and liver, and disturbed antioxidant mechanism and inflammatory response. The benefits conferred by geraniin were comparable to metformin. Transcriptomic analysis revealed a profound influence of geraniin on the hepatic expression profiles. The lipid and steroid metabolic processes that were aberrantly activated by HFD were suppressed by geraniin. Based on the differential transcriptomes, geraniin also exerted a significant modulatory effect on the expression of mitochondrial genes, potentially influencing the mitochondrial activity and leading to the observed beneficial effects.
CONCLUSION: Geraniin supplementation mitigated metabolic anomalies of MetS in rats, making it an attractive drug candidate for further investigation.
METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.
RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.
CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.
METHODS: Geraniin (95% purity) was extracted and purified from rambutan rind. Two groups of male Sprague-Dawley rats were fed with 60% high-fat diet and standard rat chow, respectively, for 12 weeks. High-fat diet-treated rats were then administered geraniin at different doses. Body weight, blood pressure and blood glucose readings were measured. At the end of treatment, blood was collected for analysis of glycated haemoglobin A1c (HbA1c), insulin, advanced glycation end-product (AGE) levels, renin, aldosterone and electrolytes.
RESULTS: Within the first week of treatment, even the lowest dose of geraniin caused a significant reduction in blood pressure, which was comparable to control diet-treated rats. There were no changes in serum electrolytes, renin or aldosterone. Similarly, there was a significant reduction in serum insulin, insulin resistance and AGE levels at the lowest dose. However, there was no significant decrease in fasting blood glucose or HbA1c. The effects of decreasing insulin, insulin resistance and AGEs were observed only at the lower doses, unlike the results observed for blood pressure reduction.
CONCLUSION: Geraniin at lower doses improved blood pressure and other metabolic parameters. Secondary metabolites of geraniin, associated with antihypertensive activity, are relatively different to those involved in inhibiting AGE formation and increasing insulin sensitivity. The secondary metabolites of geraniin may be individually responsible for the bioactivities demonstrated.
METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.
RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.
CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.