Displaying publications 1 - 20 of 751 in total

Abstract:
Sort:
  1. Assunta M, Fields N, Knight J, Chapman S
    Tob Control, 2004 Dec;13 Suppl 2:ii4-12.
    PMID: 15564219
    STUDY OBJECTIVE: To review the tobacco industry's Asian environmental tobacco smoke (ETS) consultants programme, focusing on three key nations: China, Hong Kong, and Malaysia.
    METHODS: Systematic keyword and opportunistic website searches of formerly private internal industry documents.
    MAIN RESULTS: The release of the 1986 US Surgeon General's report on second hand smoke provoked tobacco companies to prepare for a major threat to their industry. Asian programme activities included conducting national/international symposiums, consultant "road shows" and extensive lobbying and media activities. The industry exploited confounding factors said to be unique to Asian societies such as diet, culture and urban pollution to downplay the health risks of ETS. The industry consultants were said to be "..prepared to do the kinds of things they were recruited to do".
    CONCLUSIONS: The programme was successful in blurring the science on ETS and keeping the controversy alive both nationally and internationally. For the duration of the project, it also successfully dissuaded national policy makers from instituting comprehensive bans on smoking in public places.
    Matched MeSH terms: Tobacco Industry/methods*
  2. Assunta M, Chapman S
    Tob Control, 2004 Dec;13 Suppl 2:ii51-7.
    PMID: 15564221
    To review how tobacco transnational companies conducted their business in the hostile environment of Singapore, attempting to counter some of the government's tobacco control measures; to compare the Malaysian and the Singaporean governments' stance on tobacco control and the direct bearing of this on the way the tobacco companies conduct their business.
    Matched MeSH terms: Tobacco Industry/legislation & jurisprudence; Tobacco Industry/methods*
  3. Singhvi G, Patil S, Girdhar V, Chellappan DK, Gupta G, Dua K
    Panminerva Med, 2018 Dec;60(4):170-173.
    PMID: 29856179 DOI: 10.23736/S0031-0808.18.03467-5
    One of the novel and progressive technology employed in pharmaceutical manufacturing, design of medical device and tissue engineering is three-dimensional (3D) printing. 3D printing technologies provide great advantages in 3D scaffolds fabrication over traditional methods in the control of pore size, porosity, and interconnectivity. Various techniques of 3D-printing include powder bed fusion, fused deposition modeling, binder deposition, inkjet printing, photopolymerization and many others which are still evolving. 3D-printing technique been employed in developing immediate release products, various systems to deliver multiple release modalities etc. 3D printing has opened the door for new generation of customized drug delivery with built-in flexibility for safer and effective therapy. Our mini-review provides a quick snapshot on an overview of 3D printing, various techniques employed, applications and its advancements in pharmaceutical sciences.
    Matched MeSH terms: Drug Industry/trends
  4. Yin LL, Qin YW, Hou Y, Ren ZJ
    Comput Intell Neurosci, 2022;2022:7825597.
    PMID: 35463225 DOI: 10.1155/2022/7825597
    At present, there are widespread financing difficulties in China's trade circulation industry. Supply chain finance can provide financing for small- and medium-sized enterprises in China's trade circulation industry, but it will produce financing risks such as credit risks. It is necessary to analyze the causes of the risks in the supply chain finance of the trade circulation industry and measure these risks by establishing a credit risk assessment system. In this article, a supply chain financial risk early warning index system is established, including 4 first-level indicators and 29 third-level indicators. Then, on the basis of the supply chain financial risk early warning index system, combined with the method of convolution neural network, the supply chain financial risk early warning model of trade circulation industry is constructed, and the evaluation index is measured by the method of principal component analysis. Finally, the relevant data of trade circulation enterprises are selected to make an empirical analysis of the model. The conclusion shows that the supply chain financial risk early warning model and risk control measures established in this article have certain reference value for the commercial circulation industry to carry out supply chain finance. It also provides guidance for trade circulation enterprises to deal with supply chain financial risks effectively.
    Matched MeSH terms: Industry*
  5. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZN, et al.
    Curr Issues Mol Biol, 2016;18:21-42.
    PMID: 25944541
    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.
    Matched MeSH terms: Drug Industry
  6. Ranjha MMAN, Kanwal R, Shafique B, Arshad RN, Irfan S, Kieliszek M, et al.
    Molecules, 2021 Aug 12;26(16).
    PMID: 34443475 DOI: 10.3390/molecules26164893
    Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called "phytoconstituents" that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
    Matched MeSH terms: Food-Processing Industry
  7. Fediuk R, Mugahed Amran YH, Mosaberpanah MA, Danish A, El-Zeadani M, Klyuev SV, et al.
    Materials (Basel), 2020 Oct 22;13(21).
    PMID: 33105753 DOI: 10.3390/ma13214712
    The incessant demand for concrete is predicted to increase due to the fast construction developments worldwide. This demand requires a huge volume of cement production that could cause an ecological issue such as increasing the rates of CO2 emissions in the atmosphere. This motivated several scholars to search for various alternatives for cement and one of such alternatives is called sulfur-based concrete. This concrete composite contributes to reduce the amount of cement required to make conventional concrete. Sulfur can be used as a partial-alternate binder to Ordinary Portland Cement (OPC) to produce sulfur-based concrete, which is a composite matrix of construction materials collected mostly from aggregates and sulfur. Sulfur modified concrete outperforms conventional concrete in terms of rapid gain of early strength, low shrinkage, low thermal conductivity, high durability resistance and excellent adhesion. On the basis of mentioned superior characteristics of sulfur-based concrete, it can be applied as a leading construction material for underground utility systems, dams and offshore structures. Therefore, this study reviews the sources, emissions from construction enterprises and compositions of sulfur; describes the production techniques and properties of sulfur; and highlights related literature to generate comprehensive insights into the potential applications of sulfur-based concrete in the construction industry today.
    Matched MeSH terms: Construction Industry
  8. Abdalla AN, Ali K, Paw JKS, Rifai D, Faraj MA
    Sensors (Basel), 2018 Jun 30;18(7).
    PMID: 29966367 DOI: 10.3390/s18072108
    Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
    Matched MeSH terms: Industry
  9. Beenish H, Javid T, Fahad M, Siddiqui AA, Ahmed G, Syed HJ
    Sensors (Basel), 2023 Jan 09;23(2).
    PMID: 36679565 DOI: 10.3390/s23020768
    An intelligent transportation system (ITS) aims to improve traffic efficiency by integrating innovative sensing, control, and communications technologies. The industrial Internet of things (IIoT) and Industrial Revolution 4.0 recently merged to design the industrial Internet of things-intelligent transportation system (IIoT-ITS). IIoT sensing technologies play a significant role in acquiring raw data. The application continuously performs the complex task of managing traffic flows effectively based on several parameters, including the number of vehicles in the system, their location, and time. Traffic density estimation (TDE) is another important derived parameter desirable to keep track of the dynamic state of traffic volume. The expanding number of vehicles based on wireless connectivity provides new potential to predict traffic density more accurately and in real time as previously used methodologies. We explore the topic of assessing traffic density by using only a few simple metrics, such as the number of surrounding vehicles and disseminating beacons to roadside units and vice versa. This research paper investigates TDE techniques and presents a novel Markov model-based TDE technique for ITS. Finally, an OMNET++-based approach with an implementation of a significant modification of a traffic model combined with mathematical modeling of the Markov model is presented. It is intended for the study of real-world traffic traces, the identification of model parameters, and the development of simulated traffic.
    Matched MeSH terms: Industry
  10. 'Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM
    Molecules, 2023 Mar 14;28(6).
    PMID: 36985603 DOI: 10.3390/molecules28062631
    The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
    Matched MeSH terms: Food Industry
  11. Isa Halim, Rohana Abdullah, Ahmad Rasdan Ismail
    MyJurnal
    Work-related Musculoskeletal Disorders (WMSDs) are common occupational injuries among workers in the construction industry. Epidemiological studies indicated that WMSDs include neck pain, lower back pain, knee pain, leg fatigue as well as ankle and feet discomfort. The objectives of this study are to identify the WMSDs experienced by the workers during construction works and discuss the causes of those WMSDs. Subjective approach associated with modified Nordic Musculoskeletal Questionnaire (NMQ) was applied to identify the symptoms of WMSDs. A case study was conducted in several construction sites situated at the southern region of Peninsular Malaysia. During the study, 37 construction workers with different age and scope of works were interviewed to determine the WMSDs that they have experienced. Based on distributed questionnaire, almost all workers experienced pain in the region of lower back, upper back and biceps. These pains were contributed by manipulation of heavy load and high force exertion. Based on discussed causations, control measures via engineering controls method and administrative controls method were proposed to alleviate the risk of WMSDs among construction workers.
    Matched MeSH terms: Construction Industry
  12. Devan PAM, Hussin FA, Ibrahim R, Bingi K, Khanday FA
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372210 DOI: 10.3390/s21154951
    Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments. This advancement improved flexibility, scalability, needed fewer cables, reduced the network installation and commissioning time, increased productivity, and reduced maintenance costs compared to wired networks. On the other hand, using IWSNs for process control comes with the critical challenge of handling stochastic network delays, packet drop, and external noises which are capable of degrading the controller performance. Thus, this paper presents a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements.
    Matched MeSH terms: Industry
  13. Fauzan NS, Sukadarin EH, Widia M, Irianto I, Ghazali I
    PMID: 36833630 DOI: 10.3390/ijerph20042934
    This systematic literature review (SLR) aims to determine the factors influencing the use of hearing protection devices (HPDs) among industrial workers. This study was guided by the PRISMA Statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses) review method, and four databases comprising Scopus, Science Direct, PubMed, Wiley Online Library, and Google Scholar were employed. A total of 196 articles were identified, and 28 studies on the factors associated with HPD use among industrial workers from 2006 to 2021 met the inclusion criteria. Resultantly, five main themes emerged from this review: sociodemographic (29%), interpersonal influences (18%), situational influences (18%), cognitive-perceptual (29%), and health-promoting behavior (6%) associated with HPD use among industrial workers. A total of 17 sub-themes were identified, including age, gender, educational level, noise level, working experience, social models, interpersonal support, social norms, safety climate, training, organizational support, perceived barrier, perceived susceptibility, perceived severity, perceived benefit, self-efficacy, and cues to action. The significant factors influencing workers to use HPDs are sociodemographic, interpersonal influences, situational influences, and health-promoting behavior. Future studies should focus on the cues to action toward human behavior influencing the use of HPDs, workers' health status, and comorbidities of hearing loss. Therefore, this systematic study gives valuable reference resources for up-and-coming researchers as well as new knowledge to expert professionals and academics in various industries.
    Matched MeSH terms: Industry
  14. Chen K, Lee LF, Chiu W, Su C, Yeh KH, Chao HC
    Sensors (Basel), 2023 Jun 29;23(13).
    PMID: 37447883 DOI: 10.3390/s23136033
    Blockchain has become a well-known, secured, decentralized datastore in many domains, including medical, industrial, and especially the financial field. However, to meet the requirements of different fields, platforms that are built on blockchain technology must provide functions and characteristics with a wide variety of options. Although they may share similar technology at the fundamental level, the differences among them make data or transaction exchange challenging. Cross-chain transactions have become a commonly utilized function, while at the same time, some have pointed out its security loopholes. It is evident that a secure transaction scheme is desperately needed. However, what about those nodes that do not behave? It is clear that not only a secure transaction scheme is necessary, but also a system that can gradually eliminate malicious players is of dire need. At the same time, integrating different blockchain systems can be difficult due to their independent architectures, and cross-chain transactions can be at risk if malicious attackers try to control the nodes in the cross-chain system. In this paper, we propose a dynamic reputation management scheme based on the past transaction behaviors of nodes. These behaviors serve as the basis for evaluating a node's reputation to support the decision on malicious behavior and enable the system to intercept it in a timely manner. Furthermore, to establish a reputation index with high precision and flexibility, we integrate Particle Swarm Optimization (PSO) into our proposed scheme. This allows our system to meet the needs of a wide variety of blockchain platforms. Overall, the article highlights the importance of securing cross-chain transactions and proposes a method to prevent misbehavior by evaluating and managing node reputation.
    Matched MeSH terms: Industry
  15. Wardahanisah Razali, Rusmadiah Anwar
    MyJurnal
    It is hard to identify the local Malay identity in a design context compared to other cultural oriented design in several countries. This paper tries to uncover how designers interpret local identity embodied agent based on local items influences and understood and the influence of incremental, radical design that changes respective to preceding designs. A descriptive study through the literature reviews focusses on a type of artefact initiated through cultural-oriented design. Based on the preliminary study, a sampling taken from the Chinese, Indian, Japanese or European consistently apply the same fundamental understanding in regards to the culture-oriented design. From the same point of view, teapot seems to be used as one of the dominant artefact indicating the design preferences. This research will benefit both the academia and the industry and identify significant identity based on the local context and become an embodied agent to give impact in establishing the state-of-the-art of brand, the identity of local design, establish new trademark towards generating domestic, international economy and promote the nation worldwide throughout design platform.
    Matched MeSH terms: Industry
  16. Deros, B.M., Daruis, D.D.I., Ghani, J.A., Saleh, C., Wazir, R.M., Yasim, M.K., et al.
    MyJurnal
    This An Ergonomic hazard often exists in any industry. However, majority of the employees are not aware of practicing good body posture until the MSDs symptoms become permanent and chronic. The main objective of this study is to determine the manual handling problems among workers at an electronic component manufacturing company. The scope of this study focused on the study entire body disorders among workers on electronic manufacturing company using the Rapid Entire Body Assessment (REBA). A cross sectional study involving observation of the workplace, the work task and the working environment, photographs and videos taken during the observation. Later, a survey questionnaire was given to the respondents to obtain their socio-demography information, work activity and health problems. Rapid Entire Body Assessment (REBA) was conducted on all respondents to determined REBA scores in different work positions. The study was conducted at an electronic component manufacturing company located in Klang Valley, Selangor. A total of 124 workers were surveyed and REBA assessment was performed on 20 workers at Company X production area. It includes 5 categories of position at Company X, such as:loading steel bar into casing; pushing the steel bar, turning movement while adjusting the steel bar, adjusting steel bar into the loading area, unloading steel bar from casing into the machine. The study found that turning section has the highest MSDs problems regarding manual handling because majority of the respondents in the turning department felt the pain while performing their work. This is due to their job demand, which they need to handle with tools weighing from 200 to 400 kg. The REBA scores showed that17 out of 20 respondents performing turning operations, moving and pushing the steel bar recorded the highest score of 11 or more which are categorize in the very high risk group. The position of pushing and turning steel bar while moving the steel bar has higher risk that contributed to the ergonomics risk factor, which in-turn can contribute to Muscular Skeletal Disorders (MSDs). More detailed investigation and remedial measures should be taken immediately, especially for the workers performing the manual handlings activities.
    Matched MeSH terms: Industry
  17. Tseng ML, Negash YT, Nagypál NC, Iranmanesh M, Tan RR
    J Environ Manage, 2021 Aug 15;292:112735.
    PMID: 33992872 DOI: 10.1016/j.jenvman.2021.112735
    Eco-industrial parks promise to reduce environmental and social impacts and improve the economic performance of industrial parks. However, the transition from industrial parks to eco-industrial parks is still not well understood. This study contributes to developing valid hierarchical eco-industrial park transition attribute sets with qualitative information, as prior studies lack an exploration of the attributes in the transition of eco-industrial parks in Hungary. In nature, eco-industrial park transition attributes have causal and hierarchical interrelationships and are described with qualitative information. The assessment involves an analysis of the industrial symbiosis principles by using linguistic preferences. However, multiple attributes are involved in the assessment; therefore, this study proposes the Delphi method to develop a valid attribute set and applies fuzzy set theory to translate qualitative information into crisp values. The fuzzy decision-making trial evaluation laboratory method is used to visualize the attributes' causal interrelationships under uncertainties. The results indicate that the policy and regulatory framework leads to collaboration among firms in the eco-industrial park transition model. In practice, price reforms, management commitment, strategic planning, cognitive barriers and the integration of external information are the practical criteria for improvement. Theoretical and practical implications are also discussed.
    Matched MeSH terms: Industry*
  18. Negash YT, Sarmiento LSC, Tseng SW, Lim MK, Tseng ML
    Environ Sci Pollut Res Int, 2023 Sep;30(43):98156-98182.
    PMID: 37608173 DOI: 10.1007/s11356-023-29333-8
    This study develops a set of measures to address the interrelationship among circular waste-based bioeconomy (CWBE) attributes, including those of government strategy, digital collaboration, supply chain integration, smart operations, and a green supply chain, to build a circular bioeconomy that feeds fish waste back into the economy. CWBE development is a potential solution to the problem of waste reuse in the fish supply chain; however, this potential remains untapped, and prior studies have failed to provide the criteria to guide its practices. Such an analytical framework requires qualitative assessment, which is subject to uncertainty due to the linguistic preferences of decision makers. Hence, this study adopts the fuzzy Delphi method to obtain a valid set of attributes. A fuzzy decision-making trial and evaluation was applied to address the attribute relationships and determine the driving criteria of CWBE development. The results showed that government strategies play a causal role in CWBE development and drive digital collaboration, smart operations, and supply chain integration. The findings also indicated that smart manufacturing technology, organizational policies, market enhancement, supply chain analytics, and operational innovation are drivers of waste integration from fisheries into the circular economy through waste-based bioeconomy processes.
    Matched MeSH terms: Industry*
  19. Howard JK
    Br J Ind Med, 1979 Aug;36(3):220-3.
    PMID: 500781
    A group of 18 male Caucasian workers from the United Kingdom and a further group of 18 male mixed race (mainly Malay) workers from Malaysia employed in the formulation of paraquat-based herbicides were examined for evidence of chronic ill health after long-term exposure to paraquat. Clinical records were examined, medical and occupational histories were obtained and a clinical examination, particularly of the skin, was undertaken. Skin rashes, nail damage and epistaxes were encountered by most workers as a result of direct contact of skin and mucous membranes with paraquat. These conditions subsided rapidly and no worker reported any sequelae. There was no clinical evidence of long-term effects on skin, mucous membranes or general health following exposure to paraquat over several years in these workers.
    Matched MeSH terms: Chemical Industry*
  20. Garton K, Kraak V, Fanzo J, Sacks G, Vandevijvere S, Haddad L, et al.
    Public Health Nutr, 2022 Sep;25(9):2353-2357.
    PMID: 35570707 DOI: 10.1017/S1368980022001173
    There is widespread agreement among experts that a fundamental reorientation of global, regional, national and local food systems is needed to achieve the UN Sustainable Development Goals Agenda and address the linked challenges of undernutrition, obesity and climate change described as the Global Syndemic. Recognising the urgency of this imperative, a wide range of global stakeholders - governments, civil society, academia, agri-food industry, business leaders and donors - convened at the September 2021 UN Food Systems Summit to coordinate numerous statements, commitments and declarations for action to transform food systems. As the dust settles, how will they be pieced together, how will governments and food corporations be held to account and by whom? New data, analytical methods and global coalitions have created an opportunity and a need for those working in food systems monitoring to scale up and connect their efforts in order to inform and strengthen accountability actions for food systems. To this end, we present - and encourage stakeholders to join or support - an Accountability Pact to catalyse an evidence-informed transformation of current food systems to promote human and ecological health and wellbeing, social equity and economic prosperity.
    Matched MeSH terms: Food Industry/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links