Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Isa HM, Kamal AH, Idris MH, Rosli Z, Ismail J
    Trop Life Sci Res, 2017 Jan;28(1):1-21.
    PMID: 28228913 MyJurnal DOI: 10.21315/tlsr2017.28.1.1
    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm(2)) and Station 2 (141.72 mg/cm(2)), while the highest biomass was contributed by B. anomala (185.89 mg/cm(2)) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.
    Matched MeSH terms: Phaeophyta
  2. Pirian K, Jeliani ZZ, Arman M, Sohrabipour J, Yousefzadi M
    Trop Life Sci Res, 2020 Apr;31(1):1-17.
    PMID: 32963708 DOI: 10.21315/tlsr2020.31.1.1
    Nowadays the exploration and utilisation of food and feed from marine origin is becoming more important with the increase of human population. Macroalgae are rich in nutritious compounds, which can directly be used in human and animal feed industries. The current study presents the screening of chemical components of eight macroalgae species, Sargassum boveanum, Sirophysalis trinodis, Hypnea caroides, Palisda perforata, Galaxaura rugosa, Caulerpa racemose, Caulerpa sertularioides and Bryopsis corticolans from the Persian Gulf. The results revealed that the eight studied algal species possess high protein (14.46% to 38.20%), lipid (1.27% to 9.13%) and ash (15.50% to 49.14%) contents. The fatty acids and amino acids profile showed the presence of essential fatty acids and amino acids with high nutritional value. Phaeophyta species, S. boveanum and S. trinodis, showed the highest value of ash content and polyunsaturated fatty acids while Chlorophyta species, C. racemose, C. sertularioides and B. corticolans, showed the highest level of lipid and protein contents. Rhodophyta species, G. rugosa and P. perforata, showed the highest essential amino acid content. In conclusion, this study demonstrates the potential of the studied marine species as a nutritional source for human and animal uses.
    Matched MeSH terms: Phaeophyta
  3. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC
    Trends Biotechnol, 2019 Nov;37(11):1255-1268.
    PMID: 31174882 DOI: 10.1016/j.tibtech.2019.04.007
    Heavy metal pollution is one of the most pervasive environmental problems globally. Novel finely tuned algae have been proposed as a means to improve the efficacy and selectivity of heavy metal biosorption. This article reviews current research on selective algal heavy metal adsorption and critically discusses the performance of novel biosorbents. We emphasize emerging state-of-the-art techniques that customize algae for enhanced performance and selectivity, particularly molecular and chemical extraction techniques as well as nanoparticle (NP) synthesis approaches. The mechanisms and processes for developing novel algal biosorbents are also presented. Finally, we discuss the applications, challenges, and future prospects for modified algae in heavy metal biosorption.
    Matched MeSH terms: Phaeophyta/metabolism*
  4. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al.
    ScientificWorldJournal, 2014;2014:768323.
    PMID: 24526922 DOI: 10.1155/2014/768323
    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
    Matched MeSH terms: Phaeophyta/metabolism*
  5. Teng L, Han W, Fan X, Zhang X, Xu D, Wang Y, et al.
    Plant Mol Biol, 2021 Apr;105(6):611-623.
    PMID: 33528753 DOI: 10.1007/s11103-020-01113-9
    We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.
    Matched MeSH terms: Phaeophyta/genetics*; Phaeophyta/metabolism*
  6. Keng FS, Phang SM, Abd Rahman N, Yeong HY, Malin G, Leedham Elvidge E, et al.
    Phytochemistry, 2021 Oct;190:112869.
    PMID: 34274551 DOI: 10.1016/j.phytochem.2021.112869
    Four tropical seaweeds, Gracilaria manilaensis Yamamoto & Trono, Ulva reticulata Forsskål, Kappaphycus alvarezii (Doty) L.M.Liao and Turbinaria conoides (J.Agardh) Kützing, collected from various habitats throughout Malaysia, were subjected to temperatures of 40, 35, 30, 25 and 20 °C in the laboratory. An exposure range of 21-38 °C is reported for Malaysian waters. The effect of the temperature exposures on the halocarbon emissions of the seaweeds were determined 4 and 28 h after treatment. The emission rates for a suite of six halocarbons commonly emitted by seaweeds, bromoform (CHBr3), dibromomethane (CH2Br2), diiodomethane (CH2I2), iodomethane (CH3I), dibromochloromethane (CHBr2Cl) and dichlorobromomethane (CHBrCl2), were measured using a cryogenic purge-and-trap sample preparation system coupled to a gas chromatography-mass spectrometry. The emission rate of CHBr3 was the highest of the six halocarbons for all the seaweeds under all the temperatures tested, followed by CH2Br2, and CH2I2. The emission rates were affected by temperature change and exposure duration, but overall responses were unique to each seaweed species. Larger decreases in the emissions of CHBr3, CH2Br2, CH2I2 and CHBr2Cl were found for K. alvarezii and T. conoides after 4 h at 40 °C. In both cases there was a >90% (p 
    Matched MeSH terms: Phaeophyta*
  7. Holland I, Bakri YM, Sakoff J, Zaleta Pinet D, Motti C, van Altena I
    Phytochemistry, 2021 Aug;188:112798.
    PMID: 34020274 DOI: 10.1016/j.phytochem.2021.112798
    As part of our ongoing study of the specialised metabolites present in brown algae belonging to the Cystophora genus, eight new steroids including three pairs of diastereoisomers were isolated from Cystophora xiphocarpa (Harvey) (Sargassacea, Fucales). The metabolites identified by standard spectrometric methods are (16S,22S)-16,22-dihydroxyergosta-4,24(28)-dien-3-one and (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one, (16S,22S,24R)-16,22,24-trihydroxyporifera-4,28-dien-3-one and (16S,22S,24S)-16,22,24-trihydroxystigma-4,28-dien-3-one along with (16S,22S,24E)-16,22-dihydroxystigma-4,24(28)-dien-3-one and (16S,20S)-16,20-dihydroxyergosta-4,24(28)-dien-3-one. (16S,22S,24E)-16,22-Dihydroxystigma-4,24(28)-dien-3-one possessed the most potent cytotoxicity of the steroids in this series with cell growth inhibitions of GI50 8.7 ± 0.7 μM against colon cancer HT29, GI50 5.6 ± 0.8 μM against the breast cancer line MCF-7 and GI50 4.5 ± 0.2 μM against the ovarian cancer cell line A2780. (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one was found to be active against the ovarian cancer cell line A2780 with a GI50 of 6.2 ± 0.1 μM.
    Matched MeSH terms: Phaeophyta*
  8. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Phaeophyta/chemistry*
  9. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R
    Materials (Basel), 2013 Dec 18;6(12):5942-5950.
    PMID: 28788431 DOI: 10.3390/ma6125942
    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.
    Matched MeSH terms: Phaeophyta
  10. Tan PX, Thiyagarasaiyar K, Tan CY, Jeon YJ, Nadzir MSM, Wu YJ, et al.
    Mar Drugs, 2021 May 30;19(6).
    PMID: 34070821 DOI: 10.3390/md19060317
    Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.
    Matched MeSH terms: Phaeophyta*
  11. Ke-Xin Yu, Rohani Ahmad, Ching-Lee Wong, Ibrahim Jantan
    MyJurnal
    Introduction: Inhibition of the cholinesterase’s function leads to paralysis and death. This mechanism is served as a common mode of action of insecticide. The three tropical seaweeds, namely Bryopsis pennata, Padina australis and Sargassum binderi were reported for its potential mosquito larvicidal effect. In the present study, these seaweeds were evaluated for their potential as a cholinesterase inhibitor in the mechanism of larvicidal action. Methods: Ace- tylcholinsterase (AChE) inhibition assay was carried out based on the colorimetric method using a microplate reader. Phytochemical content of the seaweed extracts was screened by using liquid chromatography-mass spectroscopy (LC-MS). Results: Green seaweed B. pennata showed the strongest inhibition effect towards in vitro AChE by using
    tissue homogenates of Aedes aegypti (IC50 value = 0.84 mg mL ) and Aedes albopictus as the enzyme source (IC
    -1
    value = 0.92 mg mL-1). The pattern of Lineweaver-Burk plots revealed that B. pennata was a mixed type inhibitor of
    AChE, as the readings of Km, Vmax, Ki and Ki’, indicates that it had a strong inhibition ability with high binding affin- ity towards both free enzyme and enzyme-substrate complex. Conclusion: These findings suggest the compound(s) in
    B. pennata extract serves as a promising source that could be developed into a mosquito larvicidal agent with AChE inhibition effect.
    Matched MeSH terms: Phaeophyta
  12. Win NN, Hanyuda T, Arai S, Uchimura M, Prathep A, Draisma SG, et al.
    J Phycol, 2011 Oct;47(5):1193-209.
    PMID: 27028247 DOI: 10.1111/j.1529-8817.2011.01054.x
    A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid-like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid-like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.
    Matched MeSH terms: Phaeophyta
  13. Rohani-Ghadikolaei K, Abdulalian E, Ng WK
    J Food Sci Technol, 2012 Dec;49(6):774-80.
    PMID: 24293698 DOI: 10.1007/s13197-010-0220-0
    The proximate, fatty acid and mineral composition were determined for green (Ulva lactuca and Enteromorpha intestinalis), brown (Sargassum ilicifolium and Colpomenia sinuosa) and red (Hypnea valentiae and Gracilaria corticata) seaweeds collected from the Persian Gulf of Iran. Results showed that the seaweeds were high in carbohydrate (31.8-59.1%, dry weight) and ash (12.4-29.9%) but low in lipid content (1.5-3.6%). The protein content of red or green seaweeds was significantly higher (p 
    Matched MeSH terms: Phaeophyta
  14. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Phaeophyta/chemistry*
  15. Agatonovic-Kustrin S, Kustrin E, Angove MJ, Morton DW
    J Chromatogr A, 2018 May 18;1550:57-62.
    PMID: 29615323 DOI: 10.1016/j.chroma.2018.03.054
    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity.
    Matched MeSH terms: Phaeophyta/chemistry*
  16. Agatonovic-Kustrin S, Morton DW
    J Chromatogr A, 2017 Dec 29;1530:197-203.
    PMID: 29157606 DOI: 10.1016/j.chroma.2017.11.024
    High-Performance Thin-layer chromatography (HPTLC) combined with DPPH free radical method and α-amylase bioassay was used to compare antioxidant and antidiabetic activities in ethanol and ethyl acetate extracts from 10 marine macroalgae species (3 Chlorophyta, 4 Phaeophyta and 3 Rhodophyta) from Blue Lagoon beach (Malaysia). Samples were also evaluated for their phenolic and stigmasterol content. On average, higher antioxidant activity was observed in the ethyl acetate extracts (55.1mg/100g gallic acid equivalents (GAE) compared to 35.0mg/100g GAE) while, as expected, phenolic content was higher in ethanol extracts (330.5mg/100g GAE compared to 289.5mg/100g GAE). Amounts of fucoxanthin, stigmasterol and α-amylase inhibitory activities were higher in ethyl acetate extracts. Higher enzyme inhibition is therefore related to higher concentrations of triterpenes and phytosterols (Note: these compounds are more soluble in ethyl acetate). Ethyl acetate extracts from Caulerpa racemosa and Padina minor, had the highest α-amylase inhibitory activity, and also showed moderately high antioxidant activities, stigmasterol content and polyphenolic content. Caulerpa racemose, being green algae, does not contain fucoxanthin, while Padina minor, being brown algae, contains high amounts of fucoxanthin. Therefore, it is very unlikely that fucoxanthin contributes to α-amylase inhibitory activity as previously reported.
    Matched MeSH terms: Phaeophyta/chemistry*
  17. Chia SR, Show PL, Phang SM, Ling TC, Ong HC
    J Biosci Bioeng, 2018 Aug;126(2):220-225.
    PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015
    In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
    Matched MeSH terms: Phaeophyta/chemistry*
  18. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Shibata T, Miyake H, et al.
    Int J Syst Evol Microbiol, 2015 Dec;65(12):4388-4393.
    PMID: 26354496 DOI: 10.1099/ijsem.0.000586
    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).
    Matched MeSH terms: Phaeophyta
  19. Vasantharaja R, Stanley Abraham L, Gopinath V, Hariharan D, Smita KM
    Int J Biol Macromol, 2019 Mar 01;124:50-59.
    PMID: 30445094 DOI: 10.1016/j.ijbiomac.2018.11.104
    In this present study, isolation, characterization and protective effect of sulfated polysaccharide (SP) isolated from the brown algae Padina gymnospora was investigated. SP was isolated and characterized through FT-IR, 1H NMR, TGA, GC-MS and CHN analysis. The molecular weight of SP was found to be 16 kDa. The isolated SP contains 29.4 ± 0.35% of sulfate, 27 ± 0.11% of fucose, 0.05 ± 0.12% of protein, respectively. Furthermore, SP exhibits its excellent radical scavenging effects were evaluated by DPPH, ABTS radical scavenging and reducing power assays. Moreover, pretreatment with SP significantly mitigates H2O2 induced cytotoxicity in L-929 cells in a dose dependent manner. Furthermore, SP pretreatment ameliorates oxidative stress induced apoptosis and DNA damage, alleviates the generation of intracellular reactive oxygen species (ROS) and restores mitochondrial membrane potential (MMP) in L-929 cells through its antioxidant potential. Together, these results suggest that SP can be exploited as a natural antioxidant in the food and pharmaceutical industries.
    Matched MeSH terms: Phaeophyta/chemistry
  20. Hammed, A. M., Jaswir, I., Simsek, S., Alam, Z., Amid, A.
    MyJurnal
    This study involves extraction of sulfated polysaccahride (SP) from brown seaweed (Turbinaria turbinata). Eight processing conditions affecting enzyme aided extraction (EAE) were screened using Plackett-Burman design. Three significant factors (hydrolysis time, enzyme concentration and extraction stage) were optimized using Faced Centred Central Composite Design in Random Surface Methods. Micrograph obtained using Field Emission Scanning Electron Microscopy revealed that cellulase degradation ruptured the seaweed cell matrix thus caused increase in the release of SP. The optimum conditions for extraction of SP from T. turbinata are: extraction stage of 2, hydrolysis time of 19.5 h and enzyme concentration of 1.5 μl/ml to produce 25.13% yield. The SP obtained from cellulase treated T. turbinata is a suitable anti-inflammatory agent for pharmaceutical applications.
    Matched MeSH terms: Phaeophyta
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links