Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Keng FS, Phang SM, Abd Rahman N, Yeong HY, Malin G, Leedham Elvidge E, et al.
    Phytochemistry, 2021 Oct;190:112869.
    PMID: 34274551 DOI: 10.1016/j.phytochem.2021.112869
    Four tropical seaweeds, Gracilaria manilaensis Yamamoto & Trono, Ulva reticulata Forsskål, Kappaphycus alvarezii (Doty) L.M.Liao and Turbinaria conoides (J.Agardh) Kützing, collected from various habitats throughout Malaysia, were subjected to temperatures of 40, 35, 30, 25 and 20 °C in the laboratory. An exposure range of 21-38 °C is reported for Malaysian waters. The effect of the temperature exposures on the halocarbon emissions of the seaweeds were determined 4 and 28 h after treatment. The emission rates for a suite of six halocarbons commonly emitted by seaweeds, bromoform (CHBr3), dibromomethane (CH2Br2), diiodomethane (CH2I2), iodomethane (CH3I), dibromochloromethane (CHBr2Cl) and dichlorobromomethane (CHBrCl2), were measured using a cryogenic purge-and-trap sample preparation system coupled to a gas chromatography-mass spectrometry. The emission rate of CHBr3 was the highest of the six halocarbons for all the seaweeds under all the temperatures tested, followed by CH2Br2, and CH2I2. The emission rates were affected by temperature change and exposure duration, but overall responses were unique to each seaweed species. Larger decreases in the emissions of CHBr3, CH2Br2, CH2I2 and CHBr2Cl were found for K. alvarezii and T. conoides after 4 h at 40 °C. In both cases there was a >90% (p 
    Matched MeSH terms: Phaeophyta*
  2. Lim SJ, Wan Aida WM, Schiehser S, Rosenau T, Böhmdorfer S
    Food Chem, 2019 Jan 30;272:222-226.
    PMID: 30309536 DOI: 10.1016/j.foodchem.2018.08.034
    Fucoidan is a sulphated polysaccharide, made up mainly of l-fucose, which is found in brown seaweeds. Its chemical structure is diverse and depends on maturity, species and geographical location. The objective of this study was to elucidate the chemical structure of fucoidan from Cladosiphon okamuranus harvested in Japan. The fucoidan was subject to purification prior to monosaccharide profiling, sulphate content determination, and linkage analysis. Our results showed that Japanese Cladosiphon okamuranus fucoidan contained 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides found were d-xylose, d-galactose, d-mannose, d-glucose, d-arabinose, d-rhamnose and d-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14.
    Matched MeSH terms: Phaeophyta/chemistry*
  3. Holland I, Bakri YM, Sakoff J, Zaleta Pinet D, Motti C, van Altena I
    Phytochemistry, 2021 Aug;188:112798.
    PMID: 34020274 DOI: 10.1016/j.phytochem.2021.112798
    As part of our ongoing study of the specialised metabolites present in brown algae belonging to the Cystophora genus, eight new steroids including three pairs of diastereoisomers were isolated from Cystophora xiphocarpa (Harvey) (Sargassacea, Fucales). The metabolites identified by standard spectrometric methods are (16S,22S)-16,22-dihydroxyergosta-4,24(28)-dien-3-one and (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one, (16S,22S,24R)-16,22,24-trihydroxyporifera-4,28-dien-3-one and (16S,22S,24S)-16,22,24-trihydroxystigma-4,28-dien-3-one along with (16S,22S,24E)-16,22-dihydroxystigma-4,24(28)-dien-3-one and (16S,20S)-16,20-dihydroxyergosta-4,24(28)-dien-3-one. (16S,22S,24E)-16,22-Dihydroxystigma-4,24(28)-dien-3-one possessed the most potent cytotoxicity of the steroids in this series with cell growth inhibitions of GI50 8.7 ± 0.7 μM against colon cancer HT29, GI50 5.6 ± 0.8 μM against the breast cancer line MCF-7 and GI50 4.5 ± 0.2 μM against the ovarian cancer cell line A2780. (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one was found to be active against the ovarian cancer cell line A2780 with a GI50 of 6.2 ± 0.1 μM.
    Matched MeSH terms: Phaeophyta*
  4. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC
    Trends Biotechnol, 2019 Nov;37(11):1255-1268.
    PMID: 31174882 DOI: 10.1016/j.tibtech.2019.04.007
    Heavy metal pollution is one of the most pervasive environmental problems globally. Novel finely tuned algae have been proposed as a means to improve the efficacy and selectivity of heavy metal biosorption. This article reviews current research on selective algal heavy metal adsorption and critically discusses the performance of novel biosorbents. We emphasize emerging state-of-the-art techniques that customize algae for enhanced performance and selectivity, particularly molecular and chemical extraction techniques as well as nanoparticle (NP) synthesis approaches. The mechanisms and processes for developing novel algal biosorbents are also presented. Finally, we discuss the applications, challenges, and future prospects for modified algae in heavy metal biosorption.
    Matched MeSH terms: Phaeophyta/metabolism*
  5. Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM
    Curr Pharm Des, 2019;25(11):1147-1162.
    PMID: 31258069 DOI: 10.2174/1381612825666190618152133
    BACKGROUND: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

    METHODS: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

    RESULTS: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

    CONCLUSION: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

    Matched MeSH terms: Phaeophyta/chemistry*
  6. Hammed, A. M., Jaswir, I., Simsek, S., Alam, Z., Amid, A.
    MyJurnal
    This study involves extraction of sulfated polysaccahride (SP) from brown seaweed (Turbinaria turbinata). Eight processing conditions affecting enzyme aided extraction (EAE) were screened using Plackett-Burman design. Three significant factors (hydrolysis time, enzyme concentration and extraction stage) were optimized using Faced Centred Central Composite Design in Random Surface Methods. Micrograph obtained using Field Emission Scanning Electron Microscopy revealed that cellulase degradation ruptured the seaweed cell matrix thus caused increase in the release of SP. The optimum conditions for extraction of SP from T. turbinata are: extraction stage of 2, hydrolysis time of 19.5 h and enzyme concentration of 1.5 μl/ml to produce 25.13% yield. The SP obtained from cellulase treated T. turbinata is a suitable anti-inflammatory agent for pharmaceutical applications.
    Matched MeSH terms: Phaeophyta
  7. Teng L, Han W, Fan X, Zhang X, Xu D, Wang Y, et al.
    Plant Mol Biol, 2021 Apr;105(6):611-623.
    PMID: 33528753 DOI: 10.1007/s11103-020-01113-9
    We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.
    Matched MeSH terms: Phaeophyta/genetics*; Phaeophyta/metabolism*
  8. Win NN, Hanyuda T, Arai S, Uchimura M, Prathep A, Draisma SG, et al.
    J Phycol, 2011 Oct;47(5):1193-209.
    PMID: 27028247 DOI: 10.1111/j.1529-8817.2011.01054.x
    A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid-like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid-like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.
    Matched MeSH terms: Phaeophyta
  9. Ho CL
    Front Plant Sci, 2015;6:1057.
    PMID: 26635861 DOI: 10.3389/fpls.2015.01057
    Many algae are rich sources of sulfated polysaccharides with biological activities. The physicochemical/rheological properties and biological activities of sulfated polysaccharides are affected by the pattern and number of sulfate moieties. Sulfation of carbohydrates is catalyzed by carbohydrate sulfotransferases (CHSTs) while modification of sulfate moieties on sulfated polysaccharides was presumably catalyzed by sulfatases including formylglycine-dependent sulfatases (FGly-SULFs). Post-translationally modification of Cys to FGly in FGly-SULFs by sulfatase modifiying factors (SUMFs) is necessary for the activity of this enzyme. The aims of this study are to mine for sequences encoding algal CHSTs, FGly-SULFs and putative SUMFs from the fully sequenced algal genomes and to infer their phylogenetic relationships to their well characterized counterparts from other organisms. Algal sequences encoding CHSTs, FGly-SULFs, SUMFs, and SUMF-like proteins were successfully identified from green and brown algae. However, red algal FGly-SULFs and SUMFs were not identified. In addition, a group of SUMF-like sequences with different gene structure and possibly different functions were identified for green, brown and red algae. The phylogeny of these putative genes contributes to the corpus of knowledge of an unexplored area. The analyses of these putative genes contribute toward future production of existing and new sulfated carbohydrate polymers through enzymatic synthesis and metabolic engineering.
    Matched MeSH terms: Phaeophyta
  10. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R
    Materials (Basel), 2013 Dec 18;6(12):5942-5950.
    PMID: 28788431 DOI: 10.3390/ma6125942
    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.
    Matched MeSH terms: Phaeophyta
  11. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Phaeophyta/chemistry*
  12. Agatonovic-Kustrin S, Kustrin E, Angove MJ, Morton DW
    J Chromatogr A, 2018 May 18;1550:57-62.
    PMID: 29615323 DOI: 10.1016/j.chroma.2018.03.054
    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity.
    Matched MeSH terms: Phaeophyta/chemistry*
  13. Chia SR, Show PL, Phang SM, Ling TC, Ong HC
    J Biosci Bioeng, 2018 Aug;126(2):220-225.
    PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015
    In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
    Matched MeSH terms: Phaeophyta/chemistry*
  14. Tan PX, Thiyagarasaiyar K, Tan CY, Jeon YJ, Nadzir MSM, Wu YJ, et al.
    Mar Drugs, 2021 May 30;19(6).
    PMID: 34070821 DOI: 10.3390/md19060317
    Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.
    Matched MeSH terms: Phaeophyta*
  15. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Phaeophyta/chemistry*
  16. Yap CK, Ismail A, Omar H, Tan SG
    Environ Int, 2004 Feb;29(8):1097-104.
    PMID: 14680893
    Studies on toxicities and tolerances of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in the brown alga Isochrysis galbana and in the green-lipped mussel Perna viridis were conducted by short-term bioassays using endpoints growth production and mortality, respectively. The 5-day EC(50) and 24-h LC(50) of these heavy metals were determined in the brown alga and mussel, respectively. The EC(50) values calculated for the alga were 0.74 mg/l for Cd, 0.91 mg/l for Cu, 1.40 mg/l for Pb and 0.60 mg/l for Zn. The LC(50) values for the mussels were 1.53 mg/l for Cd, 0.25 mg/l for Cu, 4.12 mg/l for Pb and 3.20 mg/l for Zn. These LC(50) values were within the concentration ranges as reported by other authors who used P. viridis as the test organism. Based on these EC(50) and LC(50) values, the alga was most sensitive to Zn, followed by Cd, Cu and Pb while the mussel was most sensitive to Cu, followed by Cd, Zn and Pb. Differences in the trophic levels, metal handling strategies, biology and ecology of the primary producer (brown alga) and the primary consumer (mussel) are believed to be the plausible causes for the different toxicities and tolerances of the metals studied.
    Matched MeSH terms: Phaeophyta/physiology*
  17. Chia YY, Kanthimathi MS, Khoo KS, Rajarajeswaran J, Cheng HM, Yap WS
    PMID: 26415532 DOI: 10.1186/s12906-015-0867-1
    Three species of seaweeds (Padina tetrastromatica, Caulerpa racemosa and Turbinaria ornata) are widely consumed by Asians as nutraceutical food due to their antioxidant properties. Studies have shown that these seaweeds exhibit bioactivities which include antimicrobial, antiviral, anti-hypertensive and anticoagulant activities. However, investigations into the mechanisms of action pertaining to the cytotoxic activity of the seaweeds are limited. The aim of this study was to determine the antioxidant and cytotoxic activities of whole extracts of P. tetrastromatica, C. racemosa and T. ornata, including the cellular events leading to the apoptotic cell death of the extract treated-MCF-7 cells. Bioassay guided fractionation was carried out and the compounds identified.
    Matched MeSH terms: Phaeophyta/chemistry
  18. Rohani-Ghadikolaei K, Abdulalian E, Ng WK
    J Food Sci Technol, 2012 Dec;49(6):774-80.
    PMID: 24293698 DOI: 10.1007/s13197-010-0220-0
    The proximate, fatty acid and mineral composition were determined for green (Ulva lactuca and Enteromorpha intestinalis), brown (Sargassum ilicifolium and Colpomenia sinuosa) and red (Hypnea valentiae and Gracilaria corticata) seaweeds collected from the Persian Gulf of Iran. Results showed that the seaweeds were high in carbohydrate (31.8-59.1%, dry weight) and ash (12.4-29.9%) but low in lipid content (1.5-3.6%). The protein content of red or green seaweeds was significantly higher (p 
    Matched MeSH terms: Phaeophyta
  19. Ke-Xin Yu, Rohani Ahmad, Ching-Lee Wong, Ibrahim Jantan
    MyJurnal
    Introduction: Inhibition of the cholinesterase’s function leads to paralysis and death. This mechanism is served as a common mode of action of insecticide. The three tropical seaweeds, namely Bryopsis pennata, Padina australis and Sargassum binderi were reported for its potential mosquito larvicidal effect. In the present study, these seaweeds were evaluated for their potential as a cholinesterase inhibitor in the mechanism of larvicidal action. Methods: Ace- tylcholinsterase (AChE) inhibition assay was carried out based on the colorimetric method using a microplate reader. Phytochemical content of the seaweed extracts was screened by using liquid chromatography-mass spectroscopy (LC-MS). Results: Green seaweed B. pennata showed the strongest inhibition effect towards in vitro AChE by using
    tissue homogenates of Aedes aegypti (IC50 value = 0.84 mg mL ) and Aedes albopictus as the enzyme source (IC
    -1
    value = 0.92 mg mL-1). The pattern of Lineweaver-Burk plots revealed that B. pennata was a mixed type inhibitor of
    AChE, as the readings of Km, Vmax, Ki and Ki’, indicates that it had a strong inhibition ability with high binding affin- ity towards both free enzyme and enzyme-substrate complex. Conclusion: These findings suggest the compound(s) in
    B. pennata extract serves as a promising source that could be developed into a mosquito larvicidal agent with AChE inhibition effect.
    Matched MeSH terms: Phaeophyta
  20. Isa HM, Kamal AH, Idris MH, Rosli Z, Ismail J
    Trop Life Sci Res, 2017 Jan;28(1):1-21.
    PMID: 28228913 MyJurnal DOI: 10.21315/tlsr2017.28.1.1
    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm(2)) and Station 2 (141.72 mg/cm(2)), while the highest biomass was contributed by B. anomala (185.89 mg/cm(2)) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.
    Matched MeSH terms: Phaeophyta
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links