Displaying publications 1 - 20 of 136 in total

Abstract:
Sort:
  1. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
    Matched MeSH terms: Phytochemicals/pharmacology
  2. Alu'datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, et al.
    J Food Sci, 2024 Apr;89(4):1835-1864.
    PMID: 38407443 DOI: 10.1111/1750-3841.16970
    Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
    Matched MeSH terms: Phytochemicals/pharmacology
  3. Kumari R, Negi M, Thakur P, Mahajan H, Raina K, Sharma R, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Mar;397(3):1505-1524.
    PMID: 37755516 DOI: 10.1007/s00210-023-02694-0
    Saussurea costus (Falc.) Lipsch., commonly known as costus, is a perennial herb that has been traditionally used in various indigenous medicinal systems across Asia. Its historical prominence in traditional remedies underscores the need to explore its phytochemical composition, pharmacological properties, and potential therapeutic benefits. This review aims to provide a comprehensive overview of the available literature on the pharmacological properties, phytochemical constituents, ethnobotanical uses, and therapeutic potential of S. costus. An exhaustive search was performed across multiple electronic databases, including PubMed/MedLine, Google Scholar, Web of Science, Scopus, TRIP database, and Science Direct. Both experimental and clinical studies, as well as traditional ethnobotanical records, were considered for inclusion. The phytochemical analysis revealed that S. costus contains a plethora of bioactive compounds, including sesquiterpenes, flavonoids, and essential oils, which are responsible for its myriad of medicinal properties. The pharmacological studies have demonstrated its anti-inflammatory, anti-oxidant, anti-cancer, hepatoprotective, and immunomodulatory effects, among others. Ethnobotanical data showcased its extensive use in treating ailments like asthma, digestive disorders, and skin conditions. Some clinical trials also underscore its efficacy in certain health conditions, corroborating its traditional uses. S. costus possesses significant therapeutic potential, largely attributable to its rich phytochemical composition; the convergence of its traditional uses and modern pharmacological findings suggests promising avenues for future research, especially in drug development and understanding its mechanism of action in various ailments.
    Matched MeSH terms: Phytochemicals/pharmacology
  4. Jani NA, Maarof NI, Zahari MMFM, Jamil M, Zakaria II, Mohamad Zobir SZ, et al.
    Nat Prod Res, 2024 Mar;38(6):926-932.
    PMID: 37144399 DOI: 10.1080/14786419.2023.2208256
    The chemical compositions, in vitro and in silico anti-dengue activity of the essential oils of the rhizomes of Curcuma longa Linn., C. aeruginosa Roxb., and C. xanthorrhiza Roxb. had been investigated. The C. longa oil was mainly composed of ar-turmerone (54.0%) and curlone (17.7%), while the C. aeruginosa oil was rich in curzerenone (23.4%), 1,8-cineole (21.2%), and camphor (7.1%). Xanthorrhizol (21.6%), β-curcumene (19.5%), ar-curcumene (14.2%), and camphor (9.2%) were the major compounds in the C. xanthorrhiza oil. Among the oils, the C. longa oil was found to be the most active NSB-NS3 protease inhibitor (IC50 1.98 μg/mL). PLS biplot disclosed that the essential oils were classified into three separated clusters based on their characteristic chemical compositions, with C. longa positioned closest to the in vitro anti-dengue activity. Four compounds from the C. longa oil have both hydrogen and hydrophobic bonds that could be responsible for the DENV-2 NS2B-NS3 inhibitory effect.
    Matched MeSH terms: Phytochemicals/pharmacology
  5. Mehrzadeh M, Ziayeezadeh F, Pasdaran A, Kozuharova E, Goyal R, Hamedi A
    Chem Biodivers, 2024 Mar;21(3):e202301932.
    PMID: 38294082 DOI: 10.1002/cbdv.202301932
    A comprehensive literature search was conducted in PubMed, Cochrane Library, Web of Science, Scopus, the National Library of Medicine (NLM) catalog, and Google Scholar from January 1980 up until October 2023 on plants in the Gundelia genus. Gundelia L. (Asteraceae) has been treated as a monospecific genus with Gundelia tournefortii L. (1753: 814) in most recent floras with wide variation in corolla color, but nowadays, the genus consists of 17 species. The unripe inflorescences of these species, especially G. tournefortii L., are consumed in many ways. 'Akkoub' or 'akko' in Arabic, "Kangar" in Persian, and "Silifa" in Greek are the common names of G. tournefortii L., also known as tumble thistle in English. They have been used in traditional medicine to treat bronchitis, kidney stones, diarrhea, stomach pain, inflammation, liver and blood diseases, bacterial and fungal infections, and mumps. Based on recent studies, their extracts have exhibited hepatoprotective, hypolipidemic, antioxidant, anti-inflammatory, and antimicrobial effects. Moreover, a variety of phytochemicals, including terpenoids, sterols, and fatty acids, as well as vitamins and minerals, have been identified in this genus. This study reviewed the ethnobotany, phytochemicals, and biological activities of the plants in the Gundelia genus as functional foods and herbal remedies.
    Matched MeSH terms: Phytochemicals/pharmacology
  6. Zailan AAD, Karunakaran T, Santhanam R, Suriaty Yaakop A, Mohan S, Abu Bakar MH, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301936.
    PMID: 38268343 DOI: 10.1002/cbdv.202301936
    The genus Calophyllum from the family Calophyllaceae has been extensively investigated in the past due to its rich source of bioactive phenolics such as coumarins, chromanones, and xanthones. In this study, phytochemical investigation on the stem bark of Calophyllum havilandii has afforded a new 4-propyldihydrocoumarin derivative, havilarin (1) together with calolongic acid (2), caloteysmannic acid (3), isocalolongic acid (4), euxanthone (5), and β-sitosterol (6). The chemical structure of compound 1 was elucidated and established based on detailed spectroscopic techniques, including MS, IR, UV, 1D and 2D NMR. The results of anti-bacillus study indicated that the chloroform extract showed promising activities with MIC value ranging between 0.5 to 1 μg/mL on selected bacillus strains. Besides, the plant extracts and compounds 1-4 were assessed for their cytotoxicity potential on HL-7702 cell line. All the tested plant extracts and respective chemical constituents displayed non-cytotoxic activity on HL-7702 cell line.
    Matched MeSH terms: Phytochemicals/pharmacology
  7. Hikmawanti NPE, Saputri FC, Yanuar A, Jantan I, Ningrum RA, Mun'im A
    J Ethnopharmacol, 2024 Feb 10;320:117387.
    PMID: 37944874 DOI: 10.1016/j.jep.2023.117387
    ETHNOPHARMACOLOGICAL RELEVANCE: Pluchea indica (L.) Less (family Asteraceae) is popularly consumed as a medicinal vegetable and used in ethnomedicine to treat various diseases including gastrointestinal problems such as dysentery and leucorrhoea, which are due to bacterial, fungal or parasitic infections. There have been numerous studies on the antimicrobial effects of the plant due to these ethnomedicine use.

    AIM OF THIS REVIEW: This review is comprehensively discussed the information on the anti-infective properties of P. indica and its secondary metabolites, and highlight the potential of the plant as a new source of anti-infective agents.

    MATERIALS AND METHODS: Scientific databases such as Scopus, Google Scholar, ScienceDirect, PubMed, Wiley Online Library, and ACS Publications were used to gather the relevant information on the ability of P. indica to fight infections, with the leaves and roots receiving most of the attention.

    RESULTS: Anti-bacterial, anti-mycobacterial, anti-malarial, and anti-viral activities have been the most exploited. Most studies were carried out on the crude extracts of the plant and in most studies the bioactive extracts were not standardized or chemically characterized. Several studies have reported the anti-infective activity of several bioactive components of P. indica including caffeoylquinic acids, terpenoid glycosides, thiophenes, and kaempferol.

    CONCLUSIONS: The strong anti-infective effect and underlying mechanisms of the compounds provide insights into the potential of P. indica as a source of new leads for the development of anti-infective agents for use in food and pharmaceutical industries.

    Matched MeSH terms: Phytochemicals/pharmacology
  8. Wiart C, Shorna AA, Rahmatullah M, Nissapatorn V, Seelan JSS, Rahman H, et al.
    Molecules, 2023 Jul 28;28(15).
    PMID: 37570687 DOI: 10.3390/molecules28155717
    Scorodocarpus borneensis (Baill.) Becc. is attracting increased attention as a potential commercial medicinal plant product in Southeast Asia. This review summarizes the current knowledge on the taxonomy, habitat, distribution, medicinal uses, natural products, pharmacology, toxicology, and potential utilization of S. borneesis in the pharmaceutical/nutraceutical/functional cosmetic industries. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1866 to 2022. A total of 33 natural products have been identified, of which 11 were organosulfur compounds. The main organosulfur compound in the seeds is bis-(methylthiomethyl)disulfide, which inhibited the growth of a broad spectrum of bacteria and fungi, T-lymphoblastic leukemia cells, as well as platelet aggregation. Organic extracts evoked anti-microbial, cytotoxic, anti-free radical, and termiticidal effects. S. borneensis and its natural products have important and potentially patentable pharmacological properties. In particular, the seeds have the potential to be used as a source of food preservatives, antiseptics, or termiticides. However, there is a need to establish acute and chronic toxicity, to examine in vivo pharmacological effects and to perform clinical studies.
    Matched MeSH terms: Phytochemicals/pharmacology
  9. Posadino AM, Giordo R, Ramli I, Zayed H, Nasrallah GK, Wehbe Z, et al.
    Biomed Pharmacother, 2023 Jul;163:114783.
    PMID: 37121149 DOI: 10.1016/j.biopha.2023.114783
    Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
    Matched MeSH terms: Phytochemicals/pharmacology
  10. Lizazman MA, Jong VYM, Chua P, Lim WK, Karunakaran T
    Nat Prod Res, 2023 Jun;37(12):2043-2048.
    PMID: 35997666 DOI: 10.1080/14786419.2022.2116021
    Previous phytochemical investigations reported that Calophyllum spp have biosynthesized a wide range of bioactive phenolics such as xanthones and coumarins. The phytochemical study conducted on the stem bark of C. canum has led to the isolation of eight trioxygenated xanthones namely: 5-methoxytrapezifolixanthone (1), 5-methoxyananixanthone (2), caloxanthone C (3), 1,5-dihydroxy-3-methoxy-4-isoprenylxanthone (4), 6-deoxyisojacareubin (5), euxanthone (6), trapezifolixanthone (7), ananixanthone (8), together with three common triterpenoids, β-sitosterol (9), friedelin (10), and stigmasterol (11). Furthermore, xanthones 1 and 2 were isolated for the first time as naturally occurring xanthones from the plant extract. The structures of these compounds were identified and elucidated using advanced spectroscopic techniques such as 1 D & 2 D NMR, MS, and FTIR. The neuroprotective property of selected compounds was tested through in vitro stroke model. Among all tested compounds, 1 µm of compounds 8, 9, and 10 showed significant neuroprotective activity via reduction of apoptosis by ∼ 50%.
    Matched MeSH terms: Phytochemicals/pharmacology
  11. Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, et al.
    Molecules, 2023 May 19;28(10).
    PMID: 37241926 DOI: 10.3390/molecules28104186
    Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
    Matched MeSH terms: Phytochemicals/pharmacology
  12. Yap VL, Tan LF, Rajagopal M, Wiart C, Selvaraja M, Leong MY, et al.
    BMC Complement Med Ther, 2023 Mar 28;23(1):93.
    PMID: 36978110 DOI: 10.1186/s12906-023-03921-0
    BACKGROUND: Scientific literature has demonstrated the association of free radicals in the aetiology of various chronic diseases. Hence, the identification of potent antioxidants remains a useful task. The combination of multiple herbs in polyherbal formulations (PHF) is often associated with greater therapeutic efficacy due to synergistic interactions. However, antagonism can occur in natural product mixtures and the resultant antioxidant potential might not always be the additive value of the antioxidant properties of each component. In this study, we aimed to evaluate the phytochemicals, antioxidative potential and interaction among the herbs in TC-16, a new PHF comprising Curcuma longa L., Zingiber officinale var. Bentong, Piper nigrum L., Citrofortunella microcarpa (Bunge) Wijnands and Apis dorsata honey.

    METHODS: TC-16 was screened for phytochemicals. Phenolic and flavonoid contents of TC-16 and its individual ingredients were determined, followed by assessment of antioxidant properties using in vitro assays including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching (BCB) assays. Interactions among the herbs were also investigated by calculating the difference in antioxidant activity and combination index.

    RESULTS: Alkaloids, flavonoids, terpenoids, saponins and glycosides were present in TC-16. TC-16 possessed the highest phenolic (46.14 ± 1.40 mg GAE/g) and flavonoid (132.69 ± 1.43 mg CE/g) contents following C. longa. Synergistic antioxidant activity among the herbs was evident in ORAC and BCB assays which uses mainly hydrogen atom transfer-based antioxidant mechanisms.

    CONCLUSIONS: TC-16 demonstrated roles in combating free radicals. In a PHF, synergistic interaction among the herbs is observed in some but not all mechanisms. Mechanisms showing synergistic interactions should be highlighted to maximise the beneficial property of the PHF.

    Matched MeSH terms: Phytochemicals/pharmacology
  13. Toh SC, Lihan S, Bunya SR, Leong SS
    BMC Complement Med Ther, 2023 Mar 18;23(1):85.
    PMID: 36934252 DOI: 10.1186/s12906-023-03914-z
    BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical.

    AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS).

    RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p 

    Matched MeSH terms: Phytochemicals/pharmacology
  14. Anwar S, Saleem H, Khurshid U, Ansari SY, Alghamdi S, Al-Khulaidi AWA, et al.
    Nat Prod Res, 2023 Mar;37(6):1023-1029.
    PMID: 35815778 DOI: 10.1080/14786419.2022.2097230
    In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p 
    Matched MeSH terms: Phytochemicals/pharmacology
  15. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT
    Phytother Res, 2023 Mar;37(3):1036-1056.
    PMID: 36343627 DOI: 10.1002/ptr.7671
    The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
    Matched MeSH terms: Phytochemicals/pharmacology
  16. Delgado-Núñez EJ, López-Arellano ME, Olmedo-Juárez A, Díaz-Nájera JF, Ocampo-Gutiérrez AY, Mendoza-de Gives P
    Trop Biomed, 2023 Mar 01;40(1):108-114.
    PMID: 37356010 DOI: 10.47665/tb.40.1.017
    Haemonchus contortus (Hc) is a hematophagous parasite affecting the health and productivity of flocks. The administration of chemical anthelmintic drugs (AH) is the common method of deworming; however, generates resistance in the parasites to AH and it is a public health risk due to drug residues in milk, meat and sub-products. Natural compounds from plants are explored to diminish this parasitosis, improving their health and productivity, without the negative effects of AH. Ipomoea genus is a group of climbing plants belonging to the Convulvulaceae family possessing perennial leaves and tuberous roots. Medicinal properties has been attributed to this plant including nutritional agents, emetics, diuretics, diaphoretics, purgatives and pesticides. The objective of this study was assessing the in vitro nematocidal activity of a hydroalcoholic extract (HA-E) obtained from Ipomoea pauciflora (Cazahuate) flowers against Hc infective larvae (L3) and to identify its phytochemical profile (PhC-P). The assay was carried out using microtiter plates (MTP). Four HA-E concentrations were assessed and Ivermectin and distilled water were used as positive and negative control groups, respectively. Approximately 100 Hc L3 were deposited in each well (n=12) and incubated at 25-35°C for 7 days. Data were analyzed using ANOVA and a General Linear Model (GLM) followed by Tukey test (P<0.05). The treatments showing a concentration-dependent effect (CDE) were analyzed to identify their 50% and 90% lethal concentrations (CL50, 90) via a Probit Analysis. The highest mortality was observed at 50 mg/mL (82.64 ± 0.71%) and the lowest at 6.25 mg/mL (56.46 ± 2.49%), showing a CDE with increasing mortality from 6.25 to 50 mg/mL. The PhC-P revealed the presence of alkaloids, coumarins, flavonoids, tannins and triterpenes/ sterols. A HA-E from flowers of I. pauciflora will be considered to assess its potential use in the control of haemonchosis in small ruminants.
    Matched MeSH terms: Phytochemicals/pharmacology
  17. Suroowan S, Llorent-Martínez EJ, Zengin G, Buskaran K, Fakurazi S, Abdalla AN, et al.
    Molecules, 2023 Jan 06;28(2).
    PMID: 36677655 DOI: 10.3390/molecules28020599
    This study documents for the first time the phytochemical composition and biological activities of Tambourissa peltata Baker, an endemic plant from Mauritius. Phytochemical extraction was performed using ethyl acetate, methanol and distilled water as solvents. The phytochemical composition was determined through HPLC-MS and other standard assays. The DPPH, ABTS, FRAP, CUPRAC and phosphomolybdenum assays were employed for the determination of the antioxidant potential, whereas cell viability assays were used to determine the cytotoxicity. The highest phenolic and phenolic acid contents were obtained in the aqueous extract (179.91 ± 0.67 gallic acid equivalents/g and 55.74 ± 1.43 caffeic acid equivalents/g). The highest quantity of flavonoids was obtained in the ethyl acetate extract (28.97 ± 0.46 rutin equivalents/g). The methanolic extract was the highest source of flavonols (33.71 ± 0.13 mg catechin equivalents/g). A total of 34 phytochemicals were identified, mainly proanthocyanidins and flavonoid glycosides. The highest antioxidant activity in DPPH (973.40 ± 5.65 mg TE (Trolox equivalents)/g), ABTS (2030.37 ± 40.83 mg TE/g), FRAP (1461.39 ± 5.95 mg TE/g), CUPRAC (1940.99 ± 20.95 mg TE/g) and phosphomolybdenum (8.37 ± 0.23 mmol TE/g) assays was recorded for the aqueous extract. The ethyl acetate extract was the most active metal chelator. The highest acetylcholinesterase inhibitor was the methanolic extract, whereas the ethyl acetate extract was the most active against BChE. The tyrosinase enzyme was most inhibited by the methanolic extract. Alpha-amylase and glucosidase were most inhibited by the aqueous extract. The methanolic extract was capable of inducing cell cytotoxicity to the human colorectal carcinoma without damaging normal cells. T. peltata warrants further attention from the scientific community given its multifaceted biological properties.
    Matched MeSH terms: Phytochemicals/pharmacology
  18. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
    Matched MeSH terms: Phytochemicals/pharmacology
  19. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
    Matched MeSH terms: Phytochemicals/pharmacology
  20. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
    Matched MeSH terms: Phytochemicals/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links