Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Tan CS, Loh YC, Ch'ng YS, Ng CH, Yeap ZQ, Ahmad M, et al.
    J Ethnopharmacol, 2019 Mar 25;232:135-144.
    PMID: 30543913 DOI: 10.1016/j.jep.2018.12.014
    ETHNOPHARMACOLOGICAL RELEVANCE: Citrus reticulatae Pericarpium (Chen pi) was widely used as an important ingredient in the prescription of TCM to treat phlegm fluid retention type hypertension. Since Chen pi is involved in treatment as antihypertensive TCM formula, we have reasonable expectation in believing that it might possess vasorelaxant activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects.

    MATERIALS AND METHODS: The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC.

    RESULTS: CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels.

    CONCLUSION: The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.

    Matched MeSH terms: Potassium Channels/physiology
  2. Tew WY, Tan CS, Asmawi MZ, Yam MF
    Eur J Pharmacol, 2020 Aug 05;880:173123.
    PMID: 32335091 DOI: 10.1016/j.ejphar.2020.173123
    Morin (3,5,7,2',4'-pentahydroxyflavone) is a yellow coloured natural flavonoid found in plants of the Moraceae family. This favonoid is easily sources from readily available fruits, vegetables and eve certain beverages. Among the sources that was identified, it is clear that morin is most abundantly found in almond, old fustic, Indian guava, and Osage orange. Multiple studies have suggested that morin has multiple therapeutic actions and possess potential to be a functional potent drug. Previous studies demonstrated that morin is capable of resolving deoxycorticosterone acetate-salt-induced hypertension and possess strong vasorelaxant properties. However, the exact mechanisms remains unknown. Therefore, this study is designed to investigate the in vitro mechanism of morin-induced vasorelaxant effects. The underlying mechanisms of morin's vasorelaxant activities were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats. Results from the study demonstrated morin causing vasodilatory reaction in phenylephrine and potassium chloride pre-contracted endothelium-intact aortic rings with the effect being significantly affected in endothelium-denuded aortic rings. Pre-incubation of the aortic rings with ODQ (selective cGMP-independent sGC inhibitor), indomethacin (nonselective COX inhibitor), L-NAME (endothelial nitric oxide inhibitor), propranolol (β2-adrenegic receptors blocker), and atropine (muscarinic receptors blocker) significantly reduced the vasorelaxant effect of morin. It was also found to be able to reduce the intracellular calcium level by blocking VOCC and calcium intake from the extracellular environment and the intracellular release of calcium from the sarcoplasmic reticulum. The present study showed that the vasorelaxant effect of morin potentially involves the NO/sGC, muscarinic receptors, β2-adrenegic receptors, and calcium channels.
    Matched MeSH terms: Potassium Channels/physiology
  3. Tan CS, Tew WY, Jingying C, Yam MF
    Chem Biol Interact, 2021 Oct 01;348:109620.
    PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620
    Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
    Matched MeSH terms: Potassium Channels/metabolism*
  4. Ooi HL, Wu LL
    Singapore Med J, 2012 Jul;53(7):e142-4.
    PMID: 22815030
    Neonatal diabetes mellitus (DM) is defined as insulin-requiring DM in the first six months of life. Unlike type 1 DM, it is a monogenic disorder resulting from a de novo mutation in the genes involved in the development of the pancreas, β-cell mass or secretory function. The majority of neonatal DM cases are caused by a heterozygous activating mutation in the KCNJ11 or ABCC8 genes that encode the Kir6.2 and SUR1 protein subunits, respectively, in the KATP channel. Sulphonylurea, a KATP channel inhibitor, can restore insulin secretion, hence offering an attractive alternative to insulin therapy. We report three cases of neonatal DM and their genetic mutations. Two patients were successfully switched over to sulphonylurea monotherapy with resultant improvement in the quality of life and a more stable blood glucose profile. Patients with neonatal DM should undergo genetic evaluation. For patients with KCNJ11 and ABCC8 gene mutation, oral sulphonylurea should be considered.
    Matched MeSH terms: Potassium Channels, Inwardly Rectifying/genetics
  5. Jamaluddin JL, Huri HZ, Vethakkan SR
    Pharmacogenomics, 2016 06;17(8):867-81.
    PMID: 27249660 DOI: 10.2217/pgs-2016-0010
    AIM: To determine the clinical and genetic predictors of the dipeptidyl peptidase-4 (DPP-4) inhibitor treatment response in Type 2 diabetes mellitus (T2DM) patients.

    PATIENTS & METHODS: DPP4, WFS1 and KCNJ11 gene polymorphisms were genotyped in a cohort study of 662 T2DM patients treated with DPP-4 inhibitors sitagliptin, vildagliptin or linagliptin. Genotyping was performed by Applied Biosystems TaqMan SNP genotyping assay.

    RESULTS: Patients with triglyceride levels less than 1.7 mmol/l (odds ratio [OR]: 2.2.; 95% CI: 1.031-4.723), diastolic blood pressure (DBP) less than 90 mmHg (OR: 1.7; 95% CI: 1.009-2.892) and KCNJ11 rs2285676 (genotype CC) (OR: 2.0; 95% CI: 1.025-3.767) were more likely to response to DPP-4 inhibitor treatment compared with other patients, as measured by HbA1c levels.

    CONCLUSION: Triglycerides, DBP and KCNJ11 rs2285676 are predictors of the DPP-4 inhibitor treatment response in T2DM patients.

    Matched MeSH terms: Potassium Channels, Inwardly Rectifying/genetics
  6. Lee MK, Lim KH, Millns P, Mohankumar SK, Ng ST, Tan CS, et al.
    Phytomedicine, 2018 Mar 15;42:172-179.
    PMID: 29655683 DOI: 10.1016/j.phymed.2018.03.025
    BACKGROUND: Lignosus rhinocerotis (Cooke) Ryvarden is a popular medicinal mushroom used for centuries in Southeast Asia to treat asthma and chronic cough. The present study aimed to investigate the effect of this mushroom on airways patency.

    MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.

    RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p potassium channel in CWE-mediated airway relaxation is ruled out, but the bronchodilator effect was unequivocally affected by influx of calcium.

    CONCLUSIONS: The bronchodilator effect of L. rhinocerotis on airways is mediated by calcium signalling pathway downstream of Gαq-coupled protein receptors. The airway relaxation effect is both concentration- and incubation time-dependent. Our findings provide unequivocal evidence to support its traditional use to relieve asthma and cough.

    Matched MeSH terms: Potassium Channels/metabolism
  7. Tay YL, Amanah A, Adenan MI, Wahab HA, Tan ML
    Sci Rep, 2019 12 24;9(1):19757.
    PMID: 31874991 DOI: 10.1038/s41598-019-56106-6
    Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
    Matched MeSH terms: Ether-A-Go-Go Potassium Channels/metabolism*
  8. Teah YF, Abduraman MA, Amanah A, Adenan MI, Sulaiman SF, Tan ML
    Food Chem Toxicol, 2017 Sep;107(Pt A):293-301.
    PMID: 28689918 DOI: 10.1016/j.fct.2017.07.011
    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.
    Matched MeSH terms: Ether-A-Go-Go Potassium Channels/genetics*; Ether-A-Go-Go Potassium Channels/metabolism; Delayed Rectifier Potassium Channels/genetics*; Delayed Rectifier Potassium Channels/metabolism
  9. Teah YF, Abduraman MA, Amanah A, Adenan MI, Fariza Sulaiman S, Tan ML
    Data Brief, 2017 Oct;14:584-591.
    PMID: 28879216 DOI: 10.1016/j.dib.2017.08.008
    The data presented in this article are related to the research article entitled "The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression" (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan) [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293) cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.
    Matched MeSH terms: Potassium Channels; Delayed Rectifier Potassium Channels
  10. Goh KJ, Abdullah S, Wong WF, Yeap SS, Shahrizaila N, Tan CT
    Neurology Asia, 2014;19(4):409-412.
    MyJurnal
    We report a patient who presented with severe cold-induced allodynia and hyperhidrosis, and found to have acquired neuromyotonia (Isaacs syndrome) with high voltage-gated potassium channel (VGKC) antibody titre,positive contactin-associated protein 2 (CASPR2) and leucine-rich glioma-inactivated 1 (LGI1) antibodies. The patient also had positive anti-dsDNA and acetylcholine receptor (AChR) antibodies without clinical features of SLE or myasthenia gravis, suggesting a strong underlying autoimmune tendency. CT thorax showed no thymoma. Her symptoms improved with intravenous immunoglobulin infusion but recurred despite maintenance oral corticosteroids and carbamazepine. She has since been on regular IVIG infusions. Cold allodynia is an unusual presentation in acquired neuromyotonia.
    Matched MeSH terms: Potassium Channels, Voltage-Gated
  11. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
    Matched MeSH terms: Potassium Channels/metabolism*
  12. Mohamad AS, Akhtar MN, Khalivulla SI, Perimal EK, Khalid MH, Ong HM, et al.
    Basic Clin Pharmacol Toxicol, 2011 Jun;108(6):400-5.
    PMID: 21214864 DOI: 10.1111/j.1742-7843.2010.00670.x
    The possible mechanisms of action in the antinociceptive activity induced by systemic administration (intraperitoneal, i.p.) of flavokawin B (FKB) were analysed using chemical models of nociception in mice. It was demonstrated that i.p. administration of FKB to the mice at 0.3, 1.0, 3.0 and 10 mg/kg produced significant dose-related reduction in the number of abdominal constrictions. The antinociception induced by FKB in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with L-arginine, the substrate for nitric oxide synthase or glibenclamide, the ATP-sensitive K(+) channel inhibitor, but was enhanced by methylene blue, the non-specific guanylyl cyclase inhibitor. FKB also produced dose-dependent inhibition of licking response caused by intraplantar injection of phorbol 12-myristate 13-acetate, a protein kinase C activator (PKC). Together, these data indicate that the NO/cyclic guanosine monophosphate/PKC/ATP-sensitive K(+) channel pathway possibly participated in the antinociceptive action induced by FKB.
    Matched MeSH terms: Potassium Channels/physiology*
  13. Lu J, Wei H, Wu J, Jamil MF, Tan ML, Adenan MI, et al.
    PLoS One, 2014;9(12):e115648.
    PMID: 25535742 DOI: 10.1371/journal.pone.0115648
    INTRODUCTION: Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

    METHODS AND RESULTS: The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67%∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression, and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.

    CONCLUSIONS: Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes.

    Matched MeSH terms: Delayed Rectifier Potassium Channels/metabolism
  14. Yam MF, Tan CS, Shibao R
    Hypertens Res, 2018 Oct;41(10):787-797.
    PMID: 30111856 DOI: 10.1038/s41440-018-0083-8
    Orthosiphon stamineus Benth. (Lambiaceae) is an important traditional plant for the treatment of hypertension. Previous studies have demonstrated that the sinensetin content in O. stamineus is correlated with its vasorelaxant activity. However, there is still very little information regarding the vasorelaxant effect of sinensetin due to a lack of scientific studies. Therefore, the present study was designed to investigate the underlying mechanism of action of sinensetin in vasorelaxation using an in vitro precontraction aortic ring assay. The changes in the tension of the aortic ring preparations were recorded using a force-displacement transducer and the PowerLab system. The mechanisms of the vasorelaxant effect of sinensetin were determined in the presence of antagonists. Sinensetin caused relaxation of the aortic ring precontracted with PE in the presence and absence of the endothelium and with potassium chloride in endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), ODQ (selective soluble guanylate cyclase inhibitor), indomethacin (a nonselective cyclooxygenase inhibitor), tetraethylammonium (nonselective calcium activator K+ channel blocker), 4-aminopyridine (voltage-dependent K+ channel blocker), barium chloride (inwardly rectifying Kir channel blocker), glibenclamide (nonspecific ATP-sensitive K+ channel blocker), atropine (muscarinic receptor blocker), or propranolol (β-adrenergic receptor blocker), the relaxation stimulated by sinensetin was significantly reduced. Sinensetin was also active in reducing Ca2+ release from the sarcoplasmic reticulum (via IP3R) and in blocking calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of sinensetin, which involves the NO/sGC/cGMP and indomethacin pathways, calcium and potassium channels, and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Potassium Channels/metabolism*
  15. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Marmaya NH, Omar MH, et al.
    Biomed Res Int, 2019;2019:6593125.
    PMID: 31467905 DOI: 10.1155/2019/6593125
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been reported to exert antinociceptive activity. The present study aimed to elucidate the possible antinociceptive mechanisms of a lipid-soluble fraction of MECN, which was obtained after sequential extraction in petroleum ether. The petroleum ether fraction of C. nutans (PECN), administered orally to mice, was (i) subjected to capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged (intraperitoneal (i.p.)) with 0.15 mg/kg yohimbine, 1 mg/kg pindolol, 3 mg/kg caffeine, 0.2 mg/kg haloperidol, or 10 mg/kg atropine, which were the respective antagonist of α 2-adrenergic, β-adrenergic, adenosinergic, dopaminergic, or muscarinic receptors; and (iii) prechallenged (i.p.) with 10 mg/kg glibenclamide, 0.04 mg/kg apamin, 0.02 mg/kg charybdotoxin, or 4 mg/kg tetraethylammonium chloride, which were the respective inhibitor of ATP sensitive-, small conductance Ca2+-activated-, large conductance Ca2+-activated-, or nonselective voltage-activated-K+ channel. Results obtained demonstrated that PECN (100, 250, and 500 mg/kg) significantly (P<0.05) inhibited all models of nociception described earlier. The antinociceptive activity of 500 mg/kg PECN was significantly (P<0.05) attenuated when prechallenged with all antagonists or K+ channel blockers. However, only pretreatment with apamin and charybdotoxin caused full inhibition of PECN-induced antinociception. The rest of the K+ channel blockers and all antagonists caused only partial inhibition of PECN antinociception, respectively. Analyses on PECN's phytoconstituents revealed the presence of antinociceptive-bearing bioactive compounds of volatile (i.e., derivatives of γ-tocopherol, α-tocopherol, and lupeol) and nonvolatile (i.e., cinnamic acid) nature. In conclusion, PECN exerts a non-opioid-mediated antinociceptive activity involving mainly activation of adenosinergic and cholinergic receptors or small- and large-conductance Ca2+-activated-K+ channels.
    Matched MeSH terms: Potassium Channels/genetics
  16. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
    Matched MeSH terms: Potassium Channels/metabolism*
  17. Loganathan K, Moriya S, Parhar IS
    Zebrafish, 2018 10;15(5):473-483.
    PMID: 30102584 DOI: 10.1089/zeb.2018.1594
    Ambient light and temperature affect reproductive function by regulating kisspeptin and gonadotrophin-releasing hormone (GnRH) in vertebrates. Melatonin and melatonin receptors, as well as the two-pore domain K+ channel-related K+ (TREK) channels, are affected by light and/or temperature; therefore, these molecules could modulate kisspeptin and GnRH against ambient light and temperature. In this study, we investigated the effect of light and temperature, which affect melatonin levels in gene expression levels of TREK channels, kisspeptin, and GnRH. We first investigated the effects of different light and temperature conditions on brain melatonin concentrations by ELISA. Fish were exposed to either constant darkness, constant light, high temperature (35°C), or low temperature (20°C) for 72 h. Brain melatonin levels were significantly high under constant darkness and high temperature. We further investigated the effects of high brain melatonin levels by constant darkness and high temperature on gene expression levels of melatonin receptors (mt1, mt2, and mel1c), TREK channels (trek1b, trek2a, and trek2b), gnrh3, and kiss2 in the adult zebrafish brain by real-time polymerase chain reaction. Fish were exposed to constant darkness or elevated temperatures (35°C) for 72 h. trek2a, kiss2, and gnrh3 levels were increased under constant darkness. High temperature decreased gene expression levels of mt1, mt2, mel1c, and gnrh3 in the preoptic area, whereas other genes remained unchanged. Melatonin receptors, TREK channels, gnrh3, and kiss2 responded differently under high melatonin conditions. The melatonin receptors and the TREK channels could play roles in the regulation of reproduction by environmental cues, especially ambient light and temperature.
    Matched MeSH terms: Potassium Channels/genetics; Potassium Channels/metabolism*
  18. Loganathan K, Moriya S, Parhar IS
    Zoolog Sci, 2019 04 01;36(2):167-171.
    PMID: 31120653 DOI: 10.2108/zs180111
    The two-pore domain potassium ion (K + ) channel-related K + (TREK) channel and melatonin receptors play roles in the regulation of reproduction in zebrafish. Since reproduction is regulated by diurnal rhythms, the TREK family and melatonin receptors may exhibit diurnal rhythms in expression. In this study, we aimed to investigate diurnal variations of the gene expressions of TREK family and melatonin receptors and their associations with kisspeptin and gonadotrophin-releasing hormone (GnRH). Diurnal variations of trek1b, trek2a, trek2b, mt1, mt2, mel1a, kiss2 and gnrh3 expressions were examined by real-time PCR. For reproduction-related genes, kiss2 and gnrh3 exhibited diurnal rhythms. trek2a revealed a diurnal rhythm in the TREK family. mt2 and mel1c exhibited diurnal rhythms in the melatonin receptors. Since Trek2a regulates gnrh3 expression, the diurnal rhythm of gnrh3 expression suggests to be regulated by the diurnal rhythm of trek2a expression.
    Matched MeSH terms: Potassium Channels, Tandem Pore Domain/genetics; Potassium Channels, Tandem Pore Domain/metabolism*
  19. Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS
    J. Chem. Neuroanat., 2017 Dec;86:92-99.
    PMID: 29074372 DOI: 10.1016/j.jchemneu.2017.10.004
    kcnk10a has been predicted in zebrafish to be a member of the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel family known as a thermoreceptor. Since reproduction is affected by temperature, Kcnk10a could be involved in the regulation of reproduction. However, expression of kcnk10a in the zebrafish brain and association with reproduction has not been identified. In this study, the full length sequence and localization of kcnk10a in the brain was investigated and gene expressions of the TREK channel family were examined to investigate association with reproduction. We initially identified the full length cDNA sequence of kcnk10a using Rapid Amplification of cDNA Ends and localization in the zebrafish brain using in situ hybridization. Furthermore, we examined the gene expression differences of kcnk2b, kcnk10a and kcnk10b mRNA between genders as well as developmental stages by real-time PCR. The deduced amino acid sequence of the identified kcnk10a mRNA contains highly conserved two pore domains and four transmembrane regions and was higher similarity to zebrafish Kcnk10b than zebrafish Kcnk2a and 2b. kcnk10a mRNA was widely distributed in the brain such as the preoptic area, hypothalamus and the midbrain. kcnk10a mRNA expression exhibited significant difference between mature male and female, and increase during puberty. Kcnk10a could be involved in the regulation of reproductive function.
    Matched MeSH terms: Potassium Channels/genetics; Potassium Channels/metabolism*; Potassium Channels/chemistry
  20. Loganathan K, Moriya S, Parhar IS
    Biochem Biophys Res Commun, 2018 02 12;496(3):927-933.
    PMID: 29395088 DOI: 10.1016/j.bbrc.2018.01.117
    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α2-adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α2-adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α2-adrenoceptor.
    Matched MeSH terms: Potassium Channels, Tandem Pore Domain/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links