Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  2. Singh S, Agarwal R, Razak ZA, Ngu R, Nyein LL, Vasudevan S, et al.
    J Ocul Pharmacol Ther, 2018 01 17;34(1-2):214-223.
    PMID: 29341837 DOI: 10.1089/jop.2017.0098
    PURPOSE: Pseudomonas aeruginosa is the most common causative organism for contact lens-associated corneal ulcer and is commonly treated with fluoroquinolones. With the emergence of resistant strains, it is important to investigate alternative therapies. Despite well-established efficacy of tazocin against systemic Pseudomonas infections, its topical use for the treatment of Pseudomonas keratitis has not been described, hence this study was aimed to find the ocular permeation of Tazocin and its efficacy in treating keratitis in rabbit eyes.

    METHODS: We investigated the ocular permeation of topical tazocin after single drop application in normal rabbit eyes by estimating piperacillin and tazobactam concentrations in cornea, aqueous, and vitreous using a validated LC-MS/MS method. Furthermore, we determined the efficacy of repeated dose administration of tazocin against experimentally induced P. aeruginosa keratitis in rabbits in comparison to moxifloxacin. To determine the efficacy, clinical examination, histopathological examination, and estimation of bacterial load and inflammatory cytokines in cornea were done.

    RESULTS: Significant corneal concentration of piperacillin and tazobactam was detected in normal rabbit corneas after single dose treatment with tazocin. In rabbits with Pseudomonas-induced keratitis, topical tazocin caused significant clinical and histopathological improvement. This improvement was associated with reduction in corneal bacterial load and inflammatory cytokines. Compared to moxifloxacin 0.5%, tazocin treated group showed greater clinical response which was associated with higher interleukin (IL)-1β, lower tumor necrosis factor (TNF)-α, a comparable level of IL-8, greater reduction in corneal bacterial load, and lesser inflammatory cell infiltration.

    CONCLUSION: Tazocin showed good ocular penetration and was effective in treatment of Pseudomonas induced keratitis in rabbits.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  3. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J
    ScientificWorldJournal, 2012;2012:654939.
    PMID: 22792048 DOI: 10.1100/2012/654939
    Carbapenems are the primary choice of treatment for severe Pseudomonas aeruginosa infection. However, the emergence of carbapenem resistance due to the production of metallo-β-lactamases (MBLs) is of global concern. In this study, 90 imipenem- (IPM- or IP-) resistant P. aeruginosa (IRPA) isolates, including 32 previously tested positive and genotyped for MBL genes by PCR, were subjected to double-disk synergy test (DDST), combined disk test (CDT), and imipenem/imipenem-inhibitor (IP/IPI) E-test to evaluate their MBLs detection capability. All three methods were shown to have a sensitivity of 100%. However, DDST was the most specific of the three (96.6%), followed by IP/IPI E-test interpreted based on the single criteria of IP/IPI ≥8 as positive (62.1%), and CDT was the least specific (43.1%). Based on the data from this evaluation, we propose that only IRPA with IP MIC >16 μg/mL and IP/IPI ≥8 by IP/IPI E-test should be taken as positive for MBL activity. With the new dual interpretation criteria, the MBL IP/IPI E-test was shown to achieve 100% sensitivity as well as specificity for the IRPA in this study. Therefore, the IP/IPI E-test is a viable alternative phenotypic assay to detect MBL production in IRPA in our population in circumstances where PCR detection is not a feasible option.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  4. Khosravi Y, Tay ST, Vadivelu J
    Eur Rev Med Pharmacol Sci, 2010 Nov;14(11):999-1000.
    PMID: 21284350
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  5. Khosravi Y, Tee Tay S, Vadivelu J
    Diagn Microbiol Infect Dis, 2010 Jul;67(3):294-6.
    PMID: 20462725 DOI: 10.1016/j.diagmicrobio.2010.02.010
    Ninety (n = 90) imipenem-resistant Pseudomonas aeruginosa (IRPA) clinical isolates collected randomly during 2005 to 2008 from University Malaya Medical Center were assessed for the presence of different variants of metallo-beta-lactamase (MBL) genes. Polymerase chain reaction (PCR) assay detected 32 (n = 32) MBL gene PCR-positive isolates with the presence of bla(IMP) gene in 14 (n = 14) and bla(VIM) in 18 (n = 18) isolates. Four allelic variants, bla(IMP-7) (12 isolates), bla(IMP-4) (2 isolates), bla(VIM-2) (17 isolates), and bla(VIM-11) (1 isolate), of MBL genes were identified. This study is the first report of detection of bla(IMP-4), bla(VIM-2), and bla(VIM-11) MBL genes from IRPA clinical isolates in Malaysia.

    Study site: University Malaya Medical Center (UMMC)
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  6. Lim KT, Yasin RM, Yeo CC, Puthucheary SD, Balan G, Maning N, et al.
    J Microbiol Immunol Infect, 2009 Jun;42(3):197-209.
    PMID: 19812853
    Pseudomonas aeruginosa is the third most common pathogen causing nosocomial infections. The objective of this study was to investigate the antimicrobial resistance profiles and genetic diversity of hospital isolates of P. aeruginosa and to investigate the presence of several resistance genes and integrons.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  7. Phoon HYP, Hussin H, Hussain BM, Thong KL
    Microb Drug Resist, 2018 Oct;24(8):1108-1116.
    PMID: 29437541 DOI: 10.1089/mdr.2017.0258
    Pseudomonas aeruginosa infections account for high morbidity and mortality rates worldwide. Increasing resistance toward β-lactams, especially carbapenems, poses a serious therapeutic challenge. However, the multilocus sequence typing (MLST) of extended-spectrum beta lactamase (ESBL)- and carbapenemase-producing clinical P. aeruginosa has not been reported in Malaysia. This study aimed to determine the antibiotic susceptibility profiles, resistance genes, pulsotypes, and sequence types (STs) of clinical P. aeruginosa from a Malaysian tertiary hospital. These characteristics were analyzed by disk diffusion, minimum inhibitory concentration, polymerase chain reaction, pulsed-field gel electrophoresis (PFGE), and MLST for 199 nonreplicate clinical strains. The susceptibility of the strains toward the carbapenems and piperacillin-tazobactam was the lowest (≤90%), while ≥90% of the strains remained susceptible to all other classes of antimicrobial agents tested. The multidrug-resistant strains displayed high level resistance to cephalosporins (48 to ≥256 mg/L) and carbapenems (4-32 mg/L). Eleven strains harbored class 1 integrons containing blaGES-13, blaVIM-2, blaVIM-6, blaOXA-10, aacA(6')-Ib, aacA(6')-II, aadA6, and gcuD gene cassettes. Extra-integron genes, blaGES-20, blaIMP-4, blaVIM-2, and blaVIM-11, were also found. Overall, the maximum likelihood tree showed concordance in the clustering of strains having the same STs and PFGE clusters. ST708 was the predominant antibiotic-susceptible clone detected from the neonatal intensive care unit. The STs 235, 809, and 1076 clonal clusters consisted of multidrug resistant strains. ST235 is a recognized international high-risk clone. This is the first report of blaGES-13 and blaGES-20 ESBL-encoding gene variants and novel STs (STs 2329, 2335, 2337, 2338, 2340, and 2341) of P. aeruginosa in Malaysia.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  8. Idris SN, Desa MN, Aziz MN, Taib NM
    PMID: 23082561
    This study was conducted to determine the antibiotic susceptibility pattern and distribution of exoU and exoS among 44 clinical isolates of P. aeruginosa collected from different patients over a 3-month period in 2010 at a major Malaysian hospital. Susceptibility data by disk diffusion method for cefepime (30 microg), ceftazidime (30 microg), gentamicin (10 microg), piperacillin-tazobactam (100/10 microg) and ciprofloxacin (5 microg) were available for 38 isolates. Resistance to ceftazidime and piperacillin-tazobactam was the most common (74%) with five isolates not susceptible to three or more different antibiotics. PCR detection of exoU and exoS of all 44 isolates showed the former gene to be present in 18 and exoS in 41. In analyzing the two genes together, 17 isolates were detected for exoU and exoS with only two being negative for both genes. Only one isolate was detected for exoU alone whereas 24 for exoS alone. Distribution of the genes in relation to antibiotic susceptibility was inapplicable due to the majority of the isolates having similar susceptibility patterns, but the tendency of exoU-carrying isolates to be present in male patients (83%) and respiratory sites (61%) was observed (p < 0.050). The finding warrants further investigation in a larger sample of isolates.\

    Study site: Hospital Kuala Lumpur (HKL)
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  9. Ismail NS, Subbiah SK, Taib NM
    Curr Pharm Biotechnol, 2020;21(14):1539-1550.
    PMID: 32598252 DOI: 10.2174/1389201021666200629145217
    BACKGROUND: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism.

    METHODS: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog).

    RESULTS AND DISCUSSION: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid.

    CONCLUSION: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  10. Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S
    Braz J Microbiol, 2020 Sep;51(3):1317-1326.
    PMID: 32399689 DOI: 10.1007/s42770-020-00295-0
    Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  11. Ko WC, Stone GG
    Ann Clin Microbiol Antimicrob, 2020 Apr 01;19(1):14.
    PMID: 32238155 DOI: 10.1186/s12941-020-00355-1
    BACKGROUND: Antimicrobial resistance among nosocomial Gram-negative pathogens is a cause for concern in the Asia-Pacific region. The aims of this study were to measure the rates of resistance among clinical isolates collected in Asia-Pacific countries, and to determine the in vitro antimicrobial activities of ceftazidime-avibactam and comparators against these isolates.

    METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).

    RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.

    CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  12. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  13. Salleh WM, Ahmad F, Yen KH, Sirat HM
    Nat Prod Commun, 2012 Dec;7(12):1659-62.
    PMID: 23413576
    This study was designed to investigate the antioxidant and antimicrobial activities of the essential oils from Piper officinarum C. DC. GC and GC/MS analysis of the leaf and stem oils showed forty one components, representing 85.6% and 93.0% of the oil, respectively. The most abundant components in the leaf oil were beta-caryophyllene (11.2%), alpha-pinene (9.3%), sabinene (7.6%), beta-selinene (5.3%) and limonene (4.6%), while beta-caryophyllene (10.9%), alpha-phellandrene (9.3%), linalool (6.9%), limonene (6.7%) and alpha-pinene (5.0%) were the main components of the stem oil. The antioxidant activities were determined by using complementary tests: namely beta-carotene-linoleic acid, DPPH radical scavenging and total phenolic assays. The stems oil showed weak activity (IC50 = 777.4 microg/mL) in the DPPH system, but showed moderate lipid peroxidation inhibition in the beta-carotene-linoleic acid system (88.9 +/- 0.35%) compared with BHT (95.5 +/- 0.30%). Both oils showed weak activity against P. aeruginosa and E. coli with M IC values of 250 microg/mL.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  14. Raja NS, Singh NN
    J Microbiol Immunol Infect, 2007 Feb;40(1):45-9.
    PMID: 17332906
    BACKGROUND AND PURPOSE: Pseudomonas aeruginosa is an important cause of morbidity and mortality in hospitalized, critically ill patients and patients with underlying medical conditions such as cystic fibrosis, neutropenia, and iatrogenic immunosuppression. The prevalence of multiresistant P. aeruginosa isolates has been increasing. The aim of this study was to determine the antimicrobial susceptibility patterns in P. aeruginosa strains isolated at a university teaching hospital in Kuala Lumpur, Malaysia.
    METHODS: The Laboratory Information System of the microbiology department was retrospectively reviewed to determine the susceptibility patterns of P. aeruginosa isolates to anti-pseudomonal antibiotics, from January to June 2005. Disk diffusion methods were employed and results were interpreted according to National Committee for Clinical Laboratory Standards guidelines.
    RESULTS: 505 clinical isolates of P. aeruginosa were tested. Major sources of these isolates included respiratory tract, wound, urine and blood. The rates of antimicrobial resistance of isolates were 6.73% to amikacin, 12.9% to gentamicin, 10.1% to netilmicin, 10.9% to ceftazidime, 11.3% to ciprofloxacin, 9.9% to imipenem, 10.8% to piperacillin, 9.4% to piperacillin-tazobactam and 0% to polymyxin B. Of the 505 isolates, 29 (5.74%) were found to be multidrug-resistant; these were most commonly isolated from respiratory tract specimens of patients in surgical units, followed by respiratory tract specimens in patients in medical units.
    CONCLUSIONS: The data in this study showed low rates of antibiotic resistance among P. aeruginosa isolates. Combinations of aminoglycosides plus beta-lactams or quinolones should be the appropriate choice for empirical therapy in P. aeruginosa infections. Active antibiotic susceptibility testing and surveillance should be continued in order to curtail the problem of antibiotic resistance.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  15. Akbar N, Khan NA, Sagathevan K, Iqbal M, Tawab A, Siddiqui R
    Sci Rep, 2019 11 18;9(1):17012.
    PMID: 31740685 DOI: 10.1038/s41598-019-52738-w
    Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle's gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  16. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  17. Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, et al.
    J Ethnopharmacol, 2012 Jan 31;139(2):657-63.
    PMID: 22193176 DOI: 10.1016/j.jep.2011.12.016
    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  18. Lee WT, Tan BK, Eng SA, Yuen GC, Chan KL, Sim YK, et al.
    Food Funct, 2019 Sep 01;10(9):5759-5767.
    PMID: 31453615 DOI: 10.1039/c9fo01357a
    A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity. Black sea cucumber (Holothuria atra) is a tropical sea cucumber species traditionally consumed as a remedy for many ailments. There is a paucity of knowledge on the anti-infective capacity of H. atra and the underlying mechanisms involved. The objective of this study is to utilize the Caenorhabditis elegans-P. aeruginosa infection model to elucidate the anti-infective properties of H. atra. A bioactive H. atra extract and subsequently its fraction were shown to have the capability of promoting the survival of C. elegans during a customarily lethal P. aeruginosa infection. The same entities also attenuate the production of elastase, protease, pyocyanin and biofilm in P. aeruginosa. The treatment of infected transgenic lys-7::GFP worms with this H. atra fraction restores the repressed expression of the defense enzyme lys-7, indicating an improved host immunity. QTOF-LCMS analysis revealed the presence of aspidospermatidine, an indole alkaloid, and inosine in this fraction. Collectively, our findings show that H. atra possesses anti-infective properties against P. aeruginosa infection, by inhibiting pathogen virulence and, eventually, reinstating host lys-7 expression.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  19. Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438288 DOI: 10.3390/molecules23020398
    Tempoyak is a functional Malaysian food (an acid-fermented condiment) which is produced from the pulp of the durian (Durio zibethinus) fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS)-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20) out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103) and L. plantarum (ATCC8014). The seven isolated strains belonged to five different species-L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus-which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR - based). The seven strains displayed different ability to produce EPS (100-850 mg/L). Isolates exhibited a high survivability to acid (pH 3.0), bile salts (0.3%), and gastrointestinal tract model (<70%). Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44%) was observed by L. fermentum (DUR8) with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%), and good ability to reduce cholesterol (22.55% to 75.15%). Thus, the seven tested strains have value as probiotics.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  20. Ur-Rehman A, Khan SG, Naqvi SAR, Ahmad M, Akhtar N, Bokhari TH, et al.
    Pak J Pharm Sci, 2021 Jan;34(1(Special)):441-446.
    PMID: 34275792
    A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links