Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Yusoff AF, Mustafa AN, Husaain HM, Hamzah WM, Yusof AM, Harun R, et al.
    BMC Infect Dis, 2013 May 08;13:211.
    PMID: 23656634 DOI: 10.1186/1471-2334-13-211
    BACKGROUND: The aims of the study were to assess the risk factors in relation to cross border activities, exposure to mosquito bite and preventive measures taken.An outbreak of chikungunya virus (CHIKV) infection in Malaysia has been reported in Klang, Selangor (1998) and Bagan Panchor, Perak (2006). In 2009, CHIKV infection re-emerged in some states in Malaysia. It raises the possibilities that re-emergence is part of the epidemics in neighbouring countries or the disease is endemic in Malaysia. For this reason, A community-based case control study was carried out in the state of Kelantan.

    METHODS: Prospective case finding was performed from June to December 2009. Those who presented with signs and symptoms of CHIKV infection were investigated. We designed a case control study to assess the risk factors. Assessment consisted of answering questions, undergoing a medical examination, and being tested for the presence of IgM antibodies to CHIKV. Descriptive epidemiological studies were conducted by reviewing both the national surveillance and laboratory data. Multivariable logistic regression analysis was performed to determine risk factors contributing to the illness. Cases were determined by positive to RT-PCR or serological for antibodies by IgM. CHIKV specificity was confirmed by DNA sequencing.

    RESULTS: There were 129 suspected cases and 176 controls. Among suspected cases, 54.4% were diagnosed to have CHIKV infection. Among the controls, 30.1% were found to be positive to serology for antibodies [IgM, 14.2% and IgG, 15.9%]. For analytic study and based on laboratory case definition, 95 were considered as cases and 123 as controls. Those who were positive to IgG were excluded. CHIKV infection affected all ages and mostly between 50-59 years old. Staying together in the same house with infected patients and working as rubber tappers were at a higher risk of infection. The usage of Mosquito coil insecticide had shown to be a significant protective factor. Most cases were treated as outpatient, only 7.5% needed hospitalization. The CHIKV infection was attributable to central/east African genotype CHIKV.

    CONCLUSIONS: In this study, cross border activity was not a significant risk factor although Thailand and Malaysia shared the same CHIKV genotype during the episode of infections.

    Matched MeSH terms: RNA, Viral/analysis
  2. Al-Kubaisy W, Daud S, Al-Kubaisi MW, Al-Kubaisi OW, Abdullah NN
    J Matern Fetal Neonatal Med, 2019 Oct;32(20):3464-3469.
    PMID: 29656685 DOI: 10.1080/14767058.2018.1465557
    Introduction: Hepatitis C virus (HCV) infection is a serious health problem. It is a major contributor to end-stage liver disease. Worldwide, 1-8% of all pregnant women were infected. Women with viral hepatitis may be at an increased risk of pregnancy complications. There are several obstetrics intervention acts as risk factors, which are specific to women pertaining the HCV infection; anti-D immunoglobulin (Ig) therapy may be one of them. Our objectives were to estimate the prevalence of HCV antibodies (anti-HCV), RNA, and genotype distribution among women with anti-D Ig therapy. Materials and methods: A cross sectional study was conducted. A sample of 154 Rhesus negative (Rh - ve) pregnant women regardless of the anti-D Ig therapy was collected. Anti-HCV were tested using third generation enzyme immunoassay (EIA-3) and immunoblot assay (Lia Tek-111), subsequently. In addition, 89 serum samples were subjected to molecular analysis using RT-PCR and DNA enzyme immunoassay (DEIA) method for the detection of HCV-RNA and genotypes. Results: Anti-HCV, and HCV-RNA seroprevalence were significantly higher (17.1, 35.5%) among women with anti-D Ig than their counter group (6.4, 13.16%), p = .038, .018, respectively. Significant direct positive dose response correlation (r = 0.78, p = .005) had been seen between number of anti-D Ig therapy and anti-HCV seropositive rate. Anti-D Ig therapy act as a risk factor (odds ratio (OR) = 3.01, 95%CI: 1.01-8.9) especially from the third dose onward. Women with anti-D Ig therapy were at higher risk (3.6 times more) of positive HCV-RNA (OR =3.6, 95%CI =1.19-10.837). Genotype HCV-1b showed higher prevalent (52.9%) among the recipients of anti-D Ig therapy while genotype HCV-3a (6.6%) was the lowest. Conclusions: Our study showed that Anti-D immunoglobulin therapy acts as a risk factor for acquiring HCV infection. Screening for HCV should be recommended for all recipients of anti-D Ig. Not only HCV antibodies but HCV-RNA detection being recommended for the diagnosis of HCV infection. A brief rational: Pregnant women with HCV infection are at risk of adverse obstetric outcome. Anti-D Ig therapy may be a risk factor for HCV infection. Hence, we conducted a cross sectional study with the objectives to estimate the prevalence of HCV antibodies (anti-HCV), RNA, and genotype distribution among women with anti-D Ig therapy. We found that anti-HCV and HCV-RNA seroprevalence were significantly higher in women with anti-D Ig. In addition, women with anti-D Ig therapy were 3.6 times more at risk of positive HCV-RNA with genotype HCV-1b showed higher prevalence. Therefore, anti-D Ig therapy is a risk factor for acquiring HCV infection and we recommend screening for HCV for all recipients of anti-D Ig. In addition, the diagnosis of HCV infection, should be made with HCV antibodies and HCV-RNA detection.
    Matched MeSH terms: RNA, Viral/analysis
  3. Chang LY, Ali AR, Hassan SS, AbuBakar S
    Virol J, 2006;3:47.
    PMID: 16784519
    Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay.
    Matched MeSH terms: RNA, Viral/analysis
  4. Sam SS, Teoh BT, Chee CM, Mohamed-Romai-Noor NA, Abd-Jamil J, Loong SK, et al.
    Sci Rep, 2018 12 05;8(1):17632.
    PMID: 30518924 DOI: 10.1038/s41598-018-36043-6
    Getah virus (GETV), a mosquito-borne alphavirus, is an emerging animal pathogen causing outbreaks among racehorses and pigs. Early detection of the GETV infection is essential for timely implementation of disease prevention and control interventions. Thus, a rapid and accurate nucleic acid detection method for GETV is highly needed. Here, two TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were developed. The qRT-PCR primers and TaqMan MGB probe were designed based on the conserved region of nsP1 and nsP2 genes of 23 GETV genome sequences retrieved from GenBank. Only the qRT-PCR assay using nsP2-specific primers and probe detected all two Malaysia GETV strains (MM2021 and B254) without cross-reacting with other closely related arboviruses. The qRT-PCR assay detected as few as 10 copies of GETV RNA, but its detection limit at the 95% probability level was 63.25 GETV genome copies (probit analysis, P ≤ 0.05). Further validation of the qRT-PCR assay using 16 spiked simulated clinical specimens showed 100% for both sensitivity and specificity. In conclusion, the qRT-PCR assay developed in this study is useful for rapid, sensitive and specific detection and quantification of GETV.
    Matched MeSH terms: RNA, Viral/analysis
  5. Chin KL, Teoh BT, Sam SS, Loong SK, Tan KK, Azizan NS, et al.
    Trop Biomed, 2022 Dec 01;39(4):518-523.
    PMID: 36602210 DOI: 10.47665/tb.39.4.005
    Zika virus (ZIKV) infection has emerged as a global health concern following epidemic outbreaks of severe neurological disorders reported in Pacific and Americas since 2016. Therefore, a rapid, sensitive and specific diagnostic test for ZIKV infection is critical for the appropriate patient management and the control of disease spread. A TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed based on the conserved sequence regions of 463 ZIKV NS2B genes. The designed ZIKV qRT-PCR assay was evaluated for its detection limit, strain coverage and cross-reactivity. We further assessed the clinical applicability of qRT-PCR assay for ZIKV RNA detection using a total 18 simulated clinical specimens. The detection limit of the qRT-PCR assay was 11.276 ZIKV RNA copies at the 95% probability level (probit analysis, p<= 0.05). Both Asian and African ZIKV strains were detected by the qRT-PCR assay without cross-reacting with DENV-1, DENV-2, DENV-3, DENV-4, CHIKV, JEV, LGTV, GETV and SINV. The qRT-PCR assay demonstrated a perfect agreement (k = 1.000, P < 0.001) with the reference assay; the sensitivity and specificity of the qRT-PCR assay were 100% (95% CI= 79.6-100) and 100% (95% CI= 43.9-100) respectively. The qRT-PCR assay developed in this study is a useful diagnostic tool for the broad coverage detection and quantification of both the Asian and African ZIKV strains.
    Matched MeSH terms: RNA, Viral/analysis
  6. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, et al.
    J Clin Microbiol, 2015 Mar;53(3):830-7.
    PMID: 25568438 DOI: 10.1128/JCM.02648-14
    A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.
    Matched MeSH terms: RNA, Viral/analysis
  7. Hairul Aini H, Omar AR, Hair-Bejo M, Aini I
    Microbiol Res, 2008;163(5):556-63.
    PMID: 16971101
    The current available molecular method to detect infectious bursal disease virus (IBDV) is by reverse transcriptase-polymerase chain reaction (RT-PCR). However, the conventional PCR is time consuming, prone to error and less sensitive. In this study, the performances of Sybr Green I real-time PCR, enzyme-linked immunosorbent assay (ELISA) and conventional agarose detection methods in detecting specific IBDV PCR products were compared. We found the real-time PCR was at least 10 times more sensitive than ELISA detection method with a detection limit of 0.25pg. The latter was also at least 10 times more sensitive than agarose gel electrophoresis detection method. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle disease virus and infectious bronchitis virus. Hence, Sybr Green I-based real-time PCR is a highly sensitive assay for the detection of IBDV.
    Matched MeSH terms: RNA, Viral/analysis
  8. Naing C, Sitt T, Aung AT, Aung K
    Medicine (Baltimore), 2015 Jul;94(30):e1234.
    PMID: 26222859 DOI: 10.1097/MD.0000000000001234
    In Myanmar, hepatitis C virus (HCV) infection prevalence is 2%. A combination therapy of pegylated interferon alfa-2a and ribavirin (PEG-IFNa/RBV) is a standard treatment, but the effect of this antiviral therapy needs evaluation as to determine the efficacy and safety of dual PEG-IFNa/RBV therapy in treating patients infected with HCV in Myanmar.This was a retrospective analysis of data from a single clinic exclusively for gastrointestinal diseases in Yangon, Myanmar. We assessed treatment responses at the defined time points and stratified by genotypes of HCV. We also determined incidences of adverse events (AEs). We investigated independent predictors of sustained virologic response (SVR) in the participants.A total of 362 HCV-infected cases were included in this study. The majority were females (51.7%) with mean age of 47.12 years (±11.6) and noncirrhosis patients (82%). Rapid virologic response (RVR), early virologic response (EVR), end of treatment response (ETR), and SVR 24 weeks after completion of the dual treatment were 50.3% (178/362), 88% (314/357), 80.1% (286/357), and 85.6% (167/195), respectively. The most frequently reported AEs were nausea/anorexia (72.8%) and flu-like symptoms (62.4%). In multivariate analysis, 4 factors were independently associated with SVR; SVR to genotype 3 (odds ratio [OR] 2.4, 95% CI: 1.24-4.62), EVR (OR 0.54, 95% CI: 0.3-0.95), and duration of treatment (OR 1.52, 95% CI: 1.18-1.98). Study limitations were acknowledged.The efficacy and safety of the dual therapy in treating HCV-infected patient in Myanmar was acceptable. We recommend a prospective randomized control trial looking at duration of therapy and rates of achieving SVR, which could significantly impact the care of HCV-infected patients in Myanmar and perhaps other countries as well.
    Matched MeSH terms: RNA, Viral/analysis*
  9. Holmes EC, Tio PH, Perera D, Muhi J, Cardosa J
    Virus Res, 2009 Jul;143(1):1-5.
    PMID: 19463715 DOI: 10.1016/j.virusres.2009.02.020
    Although dengue is a common disease in South-East Asia, there is a marked absence of virological data from the Malaysian state of Sarawak located on the island of Borneo. From 1997 to 2002 we noted the co-circulation of DENV-2, DENV-3 and DENV-4 in Sarawak. To determine the origins of these Sarawak viruses we obtained the complete E gene sequences of 21 isolates. A phylogenetic analysis revealed multiple entries of DENV-2 and DENV-4 into Sarawak, such that multiple lineages co-circulate, yet with little exportation from Sarawak. Notably, all viral isolates were most closely related to those circulating in different localities in South-East Asia. In sum, our analysis reveals a frequent traffic of DENV in South-East Asia, with Sarawak representing a local sink population.
    Matched MeSH terms: RNA, Viral/analysis
  10. Podin Y, Gias EL, Ong F, Leong YW, Yee SF, Yusof MA, et al.
    BMC Public Health, 2006 Jul 07;6:180.
    PMID: 16827926
    BACKGROUND: A major outbreak of human enterovirus 71-associated hand, foot and mouth disease in Sarawak in 1997 marked the beginning of a series of outbreaks in the Asia Pacific region. Some of these outbreaks had unusually high numbers of fatalities and this generated much fear and anxiety in the region.

    METHODS: We established a sentinel surveillance programme for hand, foot and mouth disease in Sarawak, Malaysia, in March 1998, and the observations of the first 7 years are described here. Virus isolation, serotyping and genotyping were performed on throat, rectal, vesicle and other swabs.

    RESULTS: During this period Sarawak had two outbreaks of human enterovirus 71, in 2000 and 2003. The predominant strains circulating in the outbreaks of 1997, 2000 and 2003 were all from genogroup B, but the strains isolated during each outbreak were genetically distinct from each other. Human enterovirus 71 outbreaks occurred in a cyclical pattern every three years and Coxsackievirus A16 co-circulated with human enterovirus 71. Although vesicles were most likely to yield an isolate, this sample was not generally available from most cases and obtaining throat swabs was thus found to be the most efficient way to obtain virological information.

    CONCLUSION: Knowledge of the epidemiology of human enterovirus 71 transmission will allow public health personnel to predict when outbreaks might occur and to plan interventions in an effective manner in order to reduce the burden of disease.

    Matched MeSH terms: RNA, Viral/analysis
  11. Boyle DB, Taylor T, Cardoso M
    Aust. Vet. J., 2004 Jul;82(7):421-5.
    PMID: 15354851
    OBJECTIVE: To evaluate and implement rapid molecular diagnostic techniques for the detection of foot and mouth disease virus (FMDV) suitable for use in Australia.

    DESIGN: Two PCR TaqMan assays targeted to the FMDV internal ribosome entry site or the 3D polymerase coding region for the rapid detection of FMDV were evaluated using non-infectious materials to determine the test most appropriate for implementation as part of Australia's national preparedness for the rapid detection and diagnosis of FMD outbreaks.

    RESULTS: Two published tests (PCR TaqMan assays targeted to the FMDV IRES region or the FMDV 3D polymerase coding region) were evaluated for their ability to detect FMDV genetic material in non-infectious FMDV ELISA antigen stocks held at Australian Animal Health Laboratory. Both tests were able to detect FMDV genetic material from strains O1 Manisa, O-3039, A22, A24, A Malaysia, C, Asia 1 and SAT 1, 2 and 3. With the exception of Asia 1, the TaqMan assay targeted to the FMD 3D polymerase coding region had Ct values equal to or lower than for the TaqMan assay targeted to the IRES region suggesting that this test may provide broader serotype detection and sensitivity. However, the TaqMan assay directed to the FMDV IRES is the only one to date to have undergone substantial evaluation using clinical samples collected during an outbreak. The greatest differences observed were for O-3039, SAT 1, and 3.

    CONCLUSION: Given the ease of setting up both tests, AAHL currently runs both tests on highly suspect FMD investigations to provide independent confirmation of the absence of FMDV because the tests are focused on two independent regions of the FMDV genome. These tests add substantially to Australia's preparedness for FMD diagnosis complementing the already well-established virus isolation and antigen capture ELISA tests for index case diagnosis of FMD in Australia.

    Matched MeSH terms: RNA, Viral/analysis*
  12. Chua SK, Selvanesan S, Sivalingam B, Chem YK, Norizah I, Zuridah H, et al.
    Singapore Med J, 2006 Nov;47(11):940-6.
    PMID: 17075660
    During an outbreak from December 2004 to March 2005, 138 isolates of dengue virus were prospectively obtained from acute-phase serum samples of 1,067 patients with the provisional clinical diagnosis of acute dengue illness admitted to the adult wards of Hospital Tengku Ampuan Rahimah, Klang, Malaysia. Of the 138 dengue virus isolates, 87, 11, 24 and 3 were typed as dengue serotypes 1, 2, 3 and 4, respectively, by a commercial dengue virus typing kit using monoclonal antibodies (Mab). 13 dengue virus isolates could not be assigned to any specific serotype by serotyping Mab and molecular typing using dengue-type specific molecular typing primer pairs. We report the associated clinical features and limited molecular genetics of this Mab-escape dengue virus variant.
    Matched MeSH terms: RNA, Viral/analysis
  13. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J Virol Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
    Matched MeSH terms: RNA, Viral/analysis*
  14. Kong YY, Thay CH, Tin TC, Devi S
    J Virol Methods, 2006 Dec;138(1-2):123-30.
    PMID: 17000012 DOI: 10.1016/j.jviromet.2006.08.003
    The use of the polymerase chain reaction (PCR) in molecular diagnosis is now accepted worldwide and has become an essential tool in the research laboratory. In the laboratory, a rapid detection, serotyping and quantitation, one-step real-time RT-PCR assay was developed for dengue virus using TaqMan probes. In this assay, a set of forward and reverse primers were designed targeting the serotype conserved region at the NS5 gene, at the same time flanking a variable region for all four serotypes which were used to design the serotype-specific TaqMan probes. This multiplex one-step RT-PCR assay was evaluated using 376 samples collected during the year 2003. These groups included RNA from prototype dengue virus (1-4), RNA from acute serum from which dengue virus was isolated, RNA from tissue culture supernatants of dengue virus isolated, RNA from seronegative acute samples (which were culture and IgM negative) and RNA from samples of dengue IgM positive sera. The specificity of this assay was also evaluated using a panel of sera which were positive for other common tropical disease agents including herpes simplex virus, cytomegalovirus, measles virus, varicella-zoster virus, rubella virus, mumps virus, WWF, West Nile virus, Japanese encephalitis virus, S. typhi, Legionella, Leptospira, Chlamydia, and Mycoplasma. The sensitivity, specificity and real-time PCR efficiency of this assay were 89.54%, 100% and 91.5%, respectively.
    Matched MeSH terms: RNA, Viral/analysis*
  15. Sachithanandan S, Fielding JF
    Med J Malaysia, 1999 Mar;54(1):110-3.
    PMID: 10972013
    The aim of this study was to determine if knowledge of both the serum HCV RNA and serum anti core IgM antibody status enabled one to predict the histological severity in chronic hepatitis C. We studied 45 female patients with chronic hepatitis C infection. The presence or absence of IgM antibodies to HCV and HCV RNA by PCR in each patient's serum was determined. Liver biopsies performed were scored according to a modified Desmet's histological activity index. Negative HCV RNA patients had least histological change. HCV RNA positive patients who were also IgM antibody positive had lower scores than their IgM negative counterparts. The grade of histological severity is more accurately predictable from knowledge of both the HCV RNA and IgM anti HCV status of the patient.
    Matched MeSH terms: RNA, Viral/analysis*
  16. Blok J, Kay BH, Hall RA, Gorman BM
    Arch Virol, 1988;100(3-4):213-20.
    PMID: 2840873
    Thirteen strains of dengue type 1 were isolated from the lymphocyte fractions of 69 acute phase blood samples collected at Thursday Island Hospital during 1981 and 1982. One further strain of type 1 was isolated from 7 blood samples despatched by air from Cairns Base Hospital during 1982. Four of these Australian isolates representing the beginning, middle, and end of the epidemic were examined by restriction enzyme mapping and were found to be identical for the nine restriction enzymes used. The maps differed from those derived from two Malaysian dengue type 1 strains isolated during the epidemic of 1981-82 in that country. This suggests reliance on serological typing to establish global circulation patterns of epidemic dengue is insufficient and that more specific methods such as genome mapping are useful.
    Matched MeSH terms: RNA, Viral/analysis
  17. Rasool NB, Larralde G, Gorziglia MI
    Arch Virol, 1993;133(3-4):275-82.
    PMID: 8257289
    The VP4 genetic groups of 151 field strains of human rotaviruses obtained from infants and young children with diarrhea from four locations in Malaysia were analyzed. The strains were adapted to growth in tissue culture and studied further by molecular hybridization of northern blotted RNA to PCR-generated cDNA probes representing amino acids 84-180 of the KU strain VP4, 83-181 of the DS-1 strain VP4, and 83-180 of either the 1076 or K8 strain VP4, representing VP4 genetic groups 1-4 (P1A, P1B, P2, and P3), respectively. The majority (79% of the field strains hybridized with the KU VP4 genetic group 1 probe and were associated with G1, G3, G4, untypable, or mixed G serotypes. VP4 genetic group 1 (P1A) strains were the most common in all locations in Malaysia between 1978-1988. Three strains which exhibited G3 and subgroup I specificity hybridized with the K8 VP4 genetic group 4 probe. These three VP4 genetic group 4 (P3) strains were detected in two different years and locations, extending the initial detection of this VP4 genetic group (the K8 strain) in Japan to a larger geographical area of Asia.
    Matched MeSH terms: RNA, Viral/analysis
  18. del Amo J, Moreno S, Bucher HC, Furrer H, Logan R, Sterne J, et al.
    Clin Infect Dis, 2012 May;54(9):1364-72.
    PMID: 22460971 DOI: 10.1093/cid/cis203
    BACKGROUND: The lower tuberculosis incidence reported in human immunodeficiency virus (HIV)-positive individuals receiving combined antiretroviral therapy (cART) is difficult to interpret causally. Furthermore, the role of unmasking immune reconstitution inflammatory syndrome (IRIS) is unclear. We aim to estimate the effect of cART on tuberculosis incidence in HIV-positive individuals in high-income countries.

    METHODS: The HIV-CAUSAL Collaboration consisted of 12 cohorts from the United States and Europe of HIV-positive, ART-naive, AIDS-free individuals aged ≥18 years with baseline CD4 cell count and HIV RNA levels followed up from 1996 through 2007. We estimated hazard ratios (HRs) for cART versus no cART, adjusted for time-varying CD4 cell count and HIV RNA level via inverse probability weighting.

    RESULTS: Of 65 121 individuals, 712 developed tuberculosis over 28 months of median follow-up (incidence, 3.0 cases per 1000 person-years). The HR for tuberculosis for cART versus no cART was 0.56 (95% confidence interval [CI], 0.44-0.72) overall, 1.04 (95% CI, 0.64-1.68) for individuals aged >50 years, and 1.46 (95% CI, 0.70-3.04) for people with a CD4 cell count of <50 cells/μL. Compared with people who had not started cART, HRs differed by time since cART initiation: 1.36 (95% CI, 0.98-1.89) for initiation <3 months ago and 0.44 (95% CI, 0.34-0.58) for initiation ≥3 months ago. Compared with people who had not initiated cART, HRs <3 months after cART initiation were 0.67 (95% CI, 0.38-1.18), 1.51 (95% CI, 0.98-2.31), and 3.20 (95% CI, 1.34-7.60) for people <35, 35-50, and >50 years old, respectively, and 2.30 (95% CI, 1.03-5.14) for people with a CD4 cell count of <50 cells/μL.

    CONCLUSIONS: Tuberculosis incidence decreased after cART initiation but not among people >50 years old or with CD4 cell counts of <50 cells/μL. Despite an overall decrease in tuberculosis incidence, the increased rate during 3 months of ART suggests unmasking IRIS.

    Matched MeSH terms: RNA, Viral/analysis
  19. Sharif S, Arshad SS, Hair-Bejo M, Omar AR, Zeenathul NA, Hafidz MA
    J Feline Med Surg, 2009 Dec;11(12):1031-4.
    PMID: 19818660 DOI: 10.1016/j.jfms.2009.08.005
    The prevalence of feline coronavirus (FCoV) was studied in two catteries in Malaysia. Rectal swabs or faecal samples were collected from a total of 44 clinically healthy Persian purebred and mix-breed cats. RNA extracted from the faecal material was subjected to a reverse transcription-polymerase chain reaction (RT-PCR) using primers flanking for a conserved region of the virus genome. The overall prevalence of FCoV infection was 84% and the infection rate was higher in Persian purebred cats (96%) than mix-breed cats (70%). There was no significant association between the age or gender of tested cats and shedding the virus. This study is the first PCR-based survey for FCoV in Malaysia and showed the ubiquitous presence of FCoV in Malaysian cat colonies.
    Matched MeSH terms: RNA, Viral/analysis
  20. Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):697-705.
    PMID: 11585535
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
    Matched MeSH terms: RNA, Viral/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links