Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, et al.
    Ultrason Sonochem, 2022 Nov;90:106194.
    PMID: 36242792 DOI: 10.1016/j.ultsonch.2022.106194
    Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
    Matched MeSH terms: Saccharum*
  2. Zakaria L, Hsuan HM, Salleh B
    Trop Life Sci Res, 2011 Dec;22(2):93-101.
    PMID: 24575220
    Mating studies were conducted on 78 isolates of Fusarium species section Liseola from rice, sugarcane and maize. From the crosses with tester strains of Gibberella fujikuroi species complex, 64.1% (50 out of 78 isolates) were cross-fertile with tester strains of mating populations A to E. The results of the mating studies showed that of the 50 isolates, 19 belonged to mating population A (Gibberella moniliformis), 18 to mating population B (Gibberella sacchari), 4 to mating population E (Gibberella subglutinans), 6 to mating population D (Gibberella intermedia) and 3 to mating population C (G. fujikuroi). Identification of several mating populations from rice, sugarcane and maize could be important biological entities under field conditions.
    Matched MeSH terms: Saccharum
  3. Latiffah Zakaria, Heng Mei Hsuan, Baharuddin Salleh
    Trop Life Sci Res, 2011;22(2):93-101.
    MyJurnal
    Mating studies were conducted on 78 isolates of Fusarium species section Liseola from rice, sugarcane and maize. From the crosses with tester strains of Gibberella fujikuroi species complex, 64.1% (50 out of 78 isolates) were cross-fertile with tester strains of mating populations A to E. The results of the mating studies showed that of the 50 isolates, 19 belonged to mating population A (Gibberella moniliformis), 18 to mating population B (Gibberella sacchari), 4 to mating population E (Gibberella subglutinans), 6 to mating population D (Gibberella intermedia) and 3 to mating population C (G. fujikuroi). Identification of several mating populations from rice,sugarcane and maize could be important biological entities under field conditions.
    Matched MeSH terms: Saccharum
  4. TANGAPRABHU MURTHY, MARY FATIMAH SUBET
    MyJurnal
    Proverbs are created when people started to observe and understand the nature around them. Proverbs consist of literal meanings and implicated meanings. The way these proverbs have been said, portrays the beauty and smoothness of the language to which the proverbs belong. This research is mainly conducted to distinguish Indian community's intellectual and philosophical abilities in conveying direct and indirect meanings. The theoretical framework used in this research is inquisitive semantics by Nor Hashimah Jalaluddin (2014). This is a qualitative research. The researcher attained 25 datas by interviewing four (4) Indian informants. However, this research acquired only three 3 data in which the image of sugarcane has been used. Finding shows that the Indian community's proverbs are established from their observation towards nature and the Indian community has their own philosophical understanding and also intellectual standards in the creation of proverbs. Actual meanings behind the data used in this research have been successfully decoded using the theory of inquisitive semantics. In a nutshell, this study is highly justifiable as the theory used in this research is a renowned and authoritative theory.
    Matched MeSH terms: Saccharum
  5. Kalhori N, Nulit R, Go R
    Protein J, 2013 Oct;32(7):551-9.
    PMID: 24132392 DOI: 10.1007/s10930-013-9516-z
    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.
    Matched MeSH terms: Saccharum/classification; Saccharum/enzymology*; Saccharum/genetics
  6. Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, et al.
    Theor Appl Genet, 2020 Jan;133(1):187-199.
    PMID: 31587087 DOI: 10.1007/s00122-019-03450-w
    KEY MESSAGE: A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
    Matched MeSH terms: Saccharum/genetics*
  7. Doni F, Isahak A, Che Mohd Zain CR, Mohd Ariffin S, Wan Mohamad WN, Wan Yusoff WM
    Springerplus, 2014;3:532.
    PMID: 25279323 DOI: 10.1186/2193-1801-3-532
    BACKGROUND: Trichoderma sp. SL2 has been previously reported to enhance rice germination, vigour, growth and physiological characteristics. The use of Potato Dextrose Agar as carrier of Trichoderma sp. SL2 inoculant is not practical for field application due to its short shelf life and high cost. This study focuses on the use of corn and sugarcane bagasse as potential carriers for Trichoderma sp. SL2 inoculants.

    FINDINGS: A completely randomized design was applied for this study. Trichoderma sp. SL2 suspension mixed with corn and sugarcane bagasse were used as treatment mixture in soil. Growth parameters including rice seedling height, root length, wet weight, leaf number and biomass were measured and compared to control. The results showed that Trichoderma sp. SL2 mixed with corn significantly enhanced rice seedlings root length, wet weight and biomass compared to Trichoderma sp. SL2 mixed with sugarcane bagasse and control.

    CONCLUSION: Corn can be a potential carrier for Trichoderma spp. inoculants for field application.

    Matched MeSH terms: Saccharum
  8. Ong P, Jian J, Li X, Zou C, Yin J, Ma G
    PMID: 37356390 DOI: 10.1016/j.saa.2023.123037
    The proliferation of pathogenic fungi in sugarcane crops poses a significant threat to agricultural productivity and economic sustainability. Early identification and management of sugarcane diseases are therefore crucial to mitigate the adverse impacts of these pathogens. In this study, visible and near-infrared spectroscopy (380-1400 nm) combined with a novel wavelength selection method, referred to as modified flower pollination algorithm (MFPA), was utilized for sugarcane disease recognition. The selected wavelengths were incorporated into machine learning models, including Naïve Bayes, random forest, and support vector machine (SVM). The developed simplified SVM model, which utilized the MFPA wavelength selection method yielded the best performances, achieving a precision value of 0.9753, a sensitivity value of 0.9259, a specificity value of 0.9524, and an accuracy of 0.9487. These results outperformed those obtained by other wavelength selection approaches, including the selectivity ratio, variable importance in projection, and the baseline method of the flower pollination algorithm.
    Matched MeSH terms: Saccharum*
  9. Ong P, Jian J, Li X, Yin J, Ma G
    PMID: 37804706 DOI: 10.1016/j.saa.2023.123477
    Spectroscopy in the visible and near-infrared region (Vis-NIR) region has proven to be an effective technique for quantifying the chlorophyll contents of plants, which serves as an important indicator of their photosynthetic rate and health status. However, the Vis-NIR spectroscopy analysis confronts a significant challenge concerning the existence of spectral variations and interferences induced by diverse factors. Hence, the selection of characteristic wavelengths plays a crucial role in Vis-NIR spectroscopy analysis. In this study, a novel wavelength selection approach known as the modified regression coefficient (MRC) selection method was introduced to enhance the diagnostic accuracy of chlorophyll content in sugarcane leaves. Experimental data comprising spectral reflectance measurements (220-1400 nm) were collected from sugarcane leaf samples at different growth stages, including seedling, tillering, and jointing, and the corresponding chlorophyll contents were measured. The proposed MRC method was employed to select optimal wavelengths for analysis, and subsequent partial least squares regression (PLSR) and Gaussian process regression (GPR) models were developed to establish the relationship between the selected wavelengths and the measured chlorophyll contents. In comparison to full-spectrum modelling and other commonly employed wavelength selection techniques, the proposed simplified MRC-GPR model, utilizing a subset of 291 selected wavelengths, demonstrated superior performance. The MRC-GPR model achieved higher coefficient of determination of 0.9665 and 0.8659, and lower root mean squared error of 1.7624 and 3.2029, for calibration set and prediction set, respectively. Results showed that the GPR model, a nonlinear regression approach, outperformed the PLSR model.
    Matched MeSH terms: Saccharum*
  10. Subari N, Mohamad Saleh J, Md Shakaff AY, Zakaria A
    Sensors (Basel), 2012;12(10):14022-40.
    PMID: 23202033 DOI: 10.3390/s121014022
    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
    Matched MeSH terms: Saccharum/chemistry
  11. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, et al.
    Sci Rep, 2020 12 15;10(1):21960.
    PMID: 33319818 DOI: 10.1038/s41598-020-78912-z
    The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
    Matched MeSH terms: Saccharum
  12. Noor Afiqah Md Noor, Maizura Murad, Effarizah Mohd Esah
    Sains Malaysiana, 2018;47:2047-2054.
    This study was designed to determine the physicochemical, antioxidant and microbial properties of fresh sugarcane juice
    with calamansi juice addition. The sugarcane that was used in the experiments was the black cane variety (Saccharum
    officinarum). Sugarcane pressed with and without their peel was juiced and added with calamansi juice before analysis
    was carried out. Standard method was used to analyse physicochemical properties such as pH, total soluble solids,
    acidity and colour of sugarcane juice. Total phenolic content (TPC), DPPH and FRAP assay were conducted for antioxidant
    properties. Total plate count and yeast and mould count were carried out for the microbiological analyses. Two way
    analysis of variance (ANOVA) shows significant (p<0.05) difference on colour of sugarcane juiced after extraction with and
    without peel. There were no significant (p>0.05) difference shown for pH, acidity and total soluble solids of sugarcane
    juice pressed with and without peel. Sugarcane juice pressed with peel produced higher antioxidant value compared
    to sugarcane pressed without peel. However, sugarcane juice pressed without peeled showed a lower microbial count
    compared to sugarcane juice pressed with peel. The addition of calamansi juice proved to have significant (p<0.05)
    effect on colour, antioxidant and microbial count of the sugarcane juices.
    Matched MeSH terms: Saccharum
  13. Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P
    Plant Dis, 2001 Nov;85(11):1177-1180.
    PMID: 30823163 DOI: 10.1094/PDIS.2001.85.11.1177
    Sugarcane yellow leaf virus (SCYLV) was detected for the first time in 1996 in the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) sugarcane quarantine at Montpellier by reverse transcription-polymerase chain reaction (RT-PCR) in varieties from Brazil, Florida, Mauritius, and Réunion. Between 1997 and 2000, the virus was found by RT-PCR and/or tissue-blot immunoassay (TBIA) in additional varieties from Barbados, Cuba, Guadeloupe, Indonesia, Malaysia, Philippines, Puerto Rico, and Taiwan, suggesting a worldwide distribution of the pathogen. An excellent correlation was observed between results obtained for the two diagnostic techniques. However, even though only a few false negative results were obtained by either technique, both are now used to detect SCYLV in CIRAD's sugarcane quarantine in Montpellier. The pathogen was detected by TBIA or RT-PCR in all leaves of sugarcane foliage, but the highest percentage of infected vascular bundles was found in the top leaves. The long hot water treatment (soaking of cuttings in water at 25°C for 2 days and then at 50°C for 3 h) was ineffective in eliminating SCYLV from infected plants. Sugarcane varieties from various origins were grown in vitro by apical bud culture and apical meristem culture, and the latter proved to be the most effective method for producing SCYLV-free plants.
    Matched MeSH terms: Saccharum
  14. Liew, E. W. T.
    MyJurnal
    Current ethanol production processes utilizing crops such as sugar cane and corn starch have been well established over the decade. Other crop such as cassava is a potential candidate in producing ethanol. However, thermal processes are required to hydrolyze starch for the production of fermentable sugars. The processes are energy intensive and could lead to undesirable by-products generation. In this work, the hydrolysis of cassava starch is studied following an experimental design as a statistical problem solving approach. Central composite design (CCD) is used in order to select the most important variables from the simultaneous study on the effect and influence of operating conditions of bioreactor utilized, namely, pH, temperature and substrate concentration, as well as to optimize the process of cassava starch hydrolysis. From the results obtained, it can be concluded that the cassava starch hydrolysis is enhanced by pH and temperature. Model validations show good agreement between experimental results and the predicted responses.
    Matched MeSH terms: Saccharum
  15. Ahmad Zakuan Ahmad Azmi, Mohd. Saaid, Irawan, Sonny
    MyJurnal
    The present project investigated the potential of utilizing corncobs and sugar cane waste as viscosivier in drilling fluid. For this purpose, the synthetic-based drilling fluid, Sarapar 147, was used as the base fluid. Both the materials were subjected to pre-treatment of drying, dehumidifying, grinding and sieving process prior to rheological tests. The rheological tests were conducted in accordance with the API 13B specifications to measure mud density, plastic viscosity, yield point, 10-second and 10-minute gel strength. The study found that plastic viscosity and yield point had a direct relationship with the amount of materials added. To drill fluid additive with corn cobs, the density, plastic viscosity and yield point were increased when the amount of additives were increased. Based on these experiments, both additives were found to have the potential to be used as additive in drilling fluid. In particular, they were able to improve its rheological properties by increasing the density, plastic viscosity and yield point. The suitable concentration for the corn cobs and sugar cane is 6.45 lb/bbl and 9.43 lb/bbl, respectively.
    Matched MeSH terms: Saccharum
  16. Azlan A, Sultana S, Mahmod II
    Molecules, 2023 May 28;28(11).
    PMID: 37298880 DOI: 10.3390/molecules28114403
    The health benefits of sugar cane products are attributed to certain antioxidant compounds in plant materials. The presence of antioxidants in plant materials depends on the extraction method in terms of yield and the number of phenolic compounds identified. This study was carried out to evaluate the performance of the three extraction methods, which were selected from previous studies to show the effect of the extraction method on the content of antioxidant compounds in different types of sugar. This study also evaluates the potential of different sugar extracts in anti-diabetic activity based on in vitro assays (α-glucosidase and α-amylase). The results showed that sugar cane extracted with acidified ethanol (1.6 M HCl in 60% ethanol) was the best condition to extract a high yield of phenolic acids compared to other methods. Among the three types of sugar, less refined sugar (LRS) showed the highest yield of phenolic compounds, 57.72 µg/g, compared to brown sugar (BS) and refined sugar (RS) sugar, which were at 42.19 µg/g and 22.06 µg/g, respectively. Whereas, among the sugar cane derivatives, LRS showed minor and BS moderate inhibition towards α-amylase and α-glucosidase activity compared to white sugar (RS). Thus, it is suggested that sugar cane extracted with acidified ethanol (1.6 M HCl in 60% ethanol) is the optimum experimental condition for antioxidant content determination and provides a basis for further exploitation of the health-beneficial resources of the sugarcane products.
    Matched MeSH terms: Saccharum*
  17. Mohd Hassan FW, Muggundha Raoov, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al.
    J Sep Sci, 2018 Oct;41(19):3751-3763.
    PMID: 30125466 DOI: 10.1002/jssc.201800326
    This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations 
    Matched MeSH terms: Saccharum
  18. Umar MF, Rafatullah M, Abbas SZ, Ibrahim MNM, Ismail N
    J Hazard Mater, 2021 10 05;419:126469.
    PMID: 34192640 DOI: 10.1016/j.jhazmat.2021.126469
    Xylene, a recalcitrant compound present in wastewater from activities of petrochemical and chemical industries causes chronic problems for living organisms and the environment. Xylene contaminated wastewater may be biodegraded through a benthic microbial fuel cell (BMFC) as seen in this study. Xylene was oxidized into intermediate 3-methyl benzoic acid and entirely converted into non-toxic carbon dioxide. The highest voltage of the BMFC reactor was generated at 410 mV between 23 and 90 days when cell potential was 1 kΩ. The reactor achieved a maximum power density of about 63 mW/m2, and a current of 0.4 mA which was optimized from variable resistance (20 Ω - 1 kΩ). However, the maximum biodegradation efficiency of the BMFC was at 87.8%. The cyclic voltammetry curve helped to determine that the specific capacitance was 0.124 F/g after 30 days of the BMFC operation. Furthermore, the fitting equivalent circuit was observed with the help of Nyquist plot for calculating overall internal resistance of 65.82 Ω on 30th day and 124.5 Ω on 80th day. Staphylococcus edaphicus and Staphylococcus sparophiticus were identified by 16S rRNA sequencing as the dominant species in the control and BMFC electrode, presumably associated with xylene biodegradation.
    Matched MeSH terms: Saccharum*
  19. Buthiyappan A, Gopalan J, Abdul Raman AA
    J Environ Manage, 2019 Nov 01;249:109323.
    PMID: 31400589 DOI: 10.1016/j.jenvman.2019.109323
    This present research aims to synthesize and investigate the adsorption potential of sugarcane bagasse (SCB) impregnated with iron oxide (Fe3O4) for dye removal. The surface morphology and functional groups of the newly developed adsorbent (ISCB) were studied using Scanning Electron Microscopy/Energy-dispersive X-ray spectroscopy (SEM/EDX), Fourier transforms infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. The effects of the operating parameters, including initial dye concentration, adsorbent dosage, contact time and initial pH of the dye solution on the adsorption efficiency were investigated to identify an optimal condition. The characterization of SEM-EDX and FTIR analyses shows that ISCB has a porous structure and carbon-containing functional groups. The adsorption result revealed that ISCB removed 93.7% of dye, 88.8% of color and had a dye adsorption capacity of 7.2 mg/g within 6 h of contact time using 0.7 g/L of ISCB at pH 8.4. The result obtained fitted well for Langmuir isotherms, and adsorption process followed the pseudo-second-order kinetic model. In conclusion, this study proved that ISCB has the potential to be used as an effective and low-cost adsorbent to remove dyes from wastewater.
    Matched MeSH terms: Saccharum*
  20. Uke A, Nakazono-Nagaoka E, Chuah JA, Zain NA, Amir HG, Sudesh K, et al.
    J Environ Manage, 2021 Oct 01;295:113050.
    PMID: 34198177 DOI: 10.1016/j.jenvman.2021.113050
    Oil palm trunks (OPT) are logged for replantation and the fiber residues are disposed of into the palm plantation area. The fiber residues are expected to increase soil fertility through recycling of carbon and minerals via fiber decomposition. This study investigated the effects of OPT fiber disposal and other lignocellulosic biomass on plant growth and microbial diversity in the soil environment. Four treatment plots were tested: (A) soil+OPT fiber (1:20), (B) soil+sugarcane bagasse (1:20), (C) soil+cellulose powder (1:20), and (D) unamended soil as a negative control. Low plant height, decreased chlorophyll content, and low biomass was observed in corn grown on soil mixed with OPT fiber, cellulose, and sugarcane bagasse, when compared with those of the control. The plants grown with OPT fiber were deficient in total nitrogen and magnesium when compared with those without fiber amendment, which suggested that nitrogen and minerals in soil might be taken up by changing microflora because of the OPT fibers presence. To confirm differences in the soil microflora, metagenomics analysis was performed on untreated soil and soil from each lignocellulose treatment. The microflora of soils mixed with OPT fiber, cellulose and sugarcane bagasse revealed substantial increases in bacteria such as families Cytophagaceae and Oscillospiraceae, and two major fungal genera, Trichoderma and Trichocladium, that are involved in lignocellulose degradation. OPT fiber resulted in a drastic increase in the ratios and amounts of Trichocladium in the soil when compared with those of cellulose and sugarcane bagasse. These results indicate that unregulated disposal of OPT fiber into plantation areas could result in nutrient loss from soil by increasing the abundance of microorganisms involved in lignocellulose decomposition.
    Matched MeSH terms: Saccharum*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links