Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Vakili M, Amouzgar P, Cagnetta G, Wang B, Guo X, Mojiri A, et al.
    Polymers (Basel), 2019 Oct 16;11(10).
    PMID: 31623271 DOI: 10.3390/polym11101701
    A composite chitosan/nano-activated carbon (CS-NAC) aminated by (3-aminopropyl)triethoxysilane (APTES) was prepared in the form of beads and applied for the removal of acetaminophen from aqueous solutions. NAC and APTES concentrations were optimized to obtain a suitable adsorbent structure for enhanced removal of the pharmaceutical. The aminated adsorbent (CS-NAC-APTES beads) prepared with 40% w/w NAC and 2% v/v APTES showed higher adsorption capacity (407.83 mg/g) than CS-NAC beads (278.4 mg/g). Brunauer-Emmett-Teller (BET) analysis demonstrated that the surface area of the CS-NAC-APTES beads was larger than that of CS-NAC beads (1.16 times). The adsorption process was well fitted by the Freundlich model (R2 > 0.95), suggesting a multilayer adsorption. The kinetic study also substantiated that the pseudo-second-order model (R2 > 0.98) was in better agreement with the experimental data. Finally, it was proved that the prepared beads can be recycled (by washing with NaOH solution) at least 5 times before detectable performance loss.
    Matched MeSH terms: Silanes
  2. Daood U, Yiu CKY
    Dent Mater, 2019 02;35(2):206-216.
    PMID: 30509480 DOI: 10.1016/j.dental.2018.11.018
    OBJECTIVE: To evaluate the transdentinal cytotoxicity and macrophage phenotype response to a novel quaternary ammonium silane (QAS) cavity disinfectant.

    METHODS: NIH 3T3 mouse fibroblasts were cultured in Dulbecco's Modified Eagle's Medium and incubated for 3 days. The cells (3×104) were seeded on the pulpal side of dentine discs and the occlusal side of the discs were treated with different cavity disinfectants: Group 1: de-ionized water (control); Group 2: 2% chlorhexidine (CHX); Group 3: 2% QAS; Group 4: 5% QAS, and Group 5: 10% QAS. Cell morphology of NIH 3T3 cells was examined using scanning electron microscopy (SEM) and cell viability was assessed using Trypan blue assay. The eluates were collected and applied on cells seeded in 24-well plates. The total protein production, alkaline phosphatase activity and deposition of mineralized nodules were evaluated after 7 and 14 days. Immunofluorescence staining was performed on the samples with primary antibodies of CD68+, CD80+, and CD163+ assessing the macrophage M1/M2 phenotypes. The macrophages were imaged using a confocal scanning light microscope with an excitation wavelength of 488nm.

    RESULTS: No significant difference in cell viability (p<0.0001), total protein production (p<0.01) and mineralized nodule production (p<0.05) was found between 2% QAS and the control, which was significantly higher than 2% CHX, 5% and 10% QAS after 14 days. Alkaline phosphatase production of 2% QAS was significantly lower than the control (p<0.001), but higher than 2% CHX at 14 days. The M1/M2 macrophage ratio was also significantly lower in the 2% and 10% QAS groups (p<0.05) compared to the control and 2% CHX groups.

    SIGNIFICANCE: The 2% QAS cavity disinfectant does not have cytotoxic effects on 3T3 NIH mouse fibroblast cells and the predominance of the anti-inflammatory phenotype after its application may stimulate healing and tissue repair.

    Matched MeSH terms: Silanes
  3. Wang Y, Sun X, Gopinath SCB, Saheed MSM, Wang X
    Biotechnol Appl Biochem, 2022 Feb;69(1):376-382.
    PMID: 33538049 DOI: 10.1002/bab.2116
    Thyroid cancer appears in endocrine glands and specific to thyroid glands has been reported widely. This work was targeted to identify and quantify thyroglobulin by using antithyroglobulin antibody complexed silane surface on interdigitated electrode (IDE) sensing surface. (3-Aminopropyl)triethoxysilane linker was used to make silane-coupling with antibody and attached on the hydroxylated IDE. This electroanalytical IDE revealed the dose-dependent responses with thyroglobulin concentrations. By getting increments with the thyroglobulin concentrations, the current responses were enhanced concomitantly and the thyroglobulin detection limit was noted as 1 pM on the linear curve [y = 0.1311x + 0.5386; R² = 0.9707] with the sensitivity at lower picomolar range. Moreover, the control experiments with thyroid peroxidase and nonimmune antibody cannot yield any response of current, confirming the specific detection of thyroglobulin. This research set-up is useful to determine and quantify the thyroglobulin and diagnose thyroid cancer.
    Matched MeSH terms: Silanes
  4. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Silanes/chemistry*
  5. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Silanes/chemistry
  6. Ngeow YW, Williams DR, Chapman AV, Heng JYY
    ACS Omega, 2020 May 12;5(18):10266-10275.
    PMID: 32426583 DOI: 10.1021/acsomega.9b03920
    The reinforcing silica filler, which can be more than 40% of an elastomer composite, plays a key role to achieve the desired mechanical properties in elastomer vulcanizates. However, the highly hydrophilic nature of silica surface causes silica particle aggregation. It remained a challenge for many tire manufacturers when using silica-filled elastomer compounds. Here, the silica surface energy changes when the surface is modified with coupling or noncoupling silanes; coupling silanes can covalently bond the silica to the elastomers. The surface energy of silica was determined using inverse gas chromatography (IGC) at finite dilution (FD-IGC) and found to be reduced by up to 50% when the silica surface was silanized. The spatial distribution of silica aggregates within the tire matrix is determined by transmission electron microscopy (TEM) and a direct correlation between aggregate size (silica microdispersion) and work of cohesion from IGC is reported, highlighting surface energy and work of cohesion being excellent indicators of the degree of dispersion of silica aggregates.
    Matched MeSH terms: Silanes
  7. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Silanes/chemistry*
  8. Veloo KV, Ibrahim NAS
    J Sep Sci, 2020 Aug;43(15):3027-3035.
    PMID: 32386268 DOI: 10.1002/jssc.201901237
    A new sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was prepared as sorbent for solid-phase extraction. The extraction efficiency of the prepared sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography-mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method showed good linearity range (0.05-1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01-0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3-6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33-120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3-100.2%) and relative standard deviations (6.3-8.8%). The solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.
    Matched MeSH terms: Silanes/chemistry*
  9. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
    Matched MeSH terms: Silanes/chemistry
  10. Indarti E, Marwan, Rohaizu R, Wanrosli WD
    Int J Biol Macromol, 2019 Aug 15;135:106-112.
    PMID: 31128174 DOI: 10.1016/j.ijbiomac.2019.05.161
    Silylated cellulose has been successfully synthesized using TEMPO-oxidized nanocellulose (TEMPO-NC) from oil palm empty fruit bunch and 3-aminopropyltriethoxysilane (APS) in an ethanol/water medium at a low curing temperature of 40 °C as compared to those reported in the literature of above 100 °C. Confirmation of the grafting process can be seen from the new FTIR peaks at 810 cm-1 and 749 cm-1 which are attributed to the SiC stretching and SiC, and new 13C NMR signals at 10.3, 21.7 and 42.7 ppm which are assigned to C7, C8, and C9 of the silylated TEMPO-NC. The decrease in the intensities of the cellulose peaks of C2, C3, C6 and C6' in the 13C NMR indicates that silylation not only occurs on the hydroxyls, but more importantly on the TEMPO-NC carboxylic moiety of C6', which is postulated as being the primary factor for this successful modification. This is further corroborated by the emergence of three signals at 43, 61, and 69 ppm in the 29Si NMR spectrum which corresponds to Si(OSi)(OR)2R', Si(OSi)2(OR)R', and Si(OSi)3R' units respectively. Additional evidence is provided by the EDX which shows an increase in Si weight percent of 1.94 after reaction. This silylated cellulose from OPEFB has the potentials to be used as bionanocomposite reinforcing elements.
    Matched MeSH terms: Silanes/chemistry*
  11. Elshereksi NW, Ghazali M, Muchtar A, Azhari CH
    Dent Mater J, 2017 Sep 26;36(5):539-552.
    PMID: 28652551 DOI: 10.4012/dmj.2016-014
    Silane is a dominant coupler that is widely used in dentistry to promote adhesion among the components of dental composites. Silica-based fillers can be easily silanized because of their similarly ordered structure. However, silane is hydrolytically degraded in the aqueous oral environment and inefficiently bonds to non-silica fillers. Thus, the development of hydrolytically stable dental composites is an important objective in the research on dental materials. Titanate coupling agents (TCAs) exhibit satisfactory interfacial bonding, enhanced homogeneous filler dispersion, and improved mechanical properties of the composites. Titanates also provide superior hydrolytic stability in wet environments, which should be considered in fabricating dental composites. The addition of a small amount of titanates can improve the resistance of the composites to moisture. This paper reviews the effects of the instability of silanes in moisture on the performance of dental composites and presents TCAs as alternative couplers to silanes for fabricating dental composites.
    Matched MeSH terms: Silanes*
  12. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Silanes*
  13. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

    Matched MeSH terms: Silanes
  14. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiasl S, Dehzangi A
    Int J Mol Sci, 2012;13(4):4860-72.
    PMID: 22606014 DOI: 10.3390/ijms13044860
    Polyimide/SiO(2) composite films were prepared from tetraethoxysilane (TEOS) and poly(amic acid) (PAA) based on aromatic diamine (4-aminophenyl sulfone) (4-APS) and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride) (BTDA) via a sol-gel process in N-methyl-2-pyrrolidinone (NMP). The prepared polyimide/SiO(2) composite films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA) and the formation of SiO(2) particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO(2) particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO(2) composite films were investigated using TGA in N(2) atmosphere. The activation energy of the solid-state process was calculated using Flynn-Wall-Ozawa's method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.
    Matched MeSH terms: Silanes/chemistry
  15. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
    Matched MeSH terms: Silanes
  16. Bidsorkhi HC, Riazi H, Emadzadeh D, Ghanbari M, Matsuura T, Lau WJ, et al.
    Nanotechnology, 2016 Oct 14;27(41):415706.
    PMID: 27607307 DOI: 10.1088/0957-4484/27/41/415706
    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.
    Matched MeSH terms: Silanes
  17. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, et al.
    Biosens Bioelectron, 2016 Oct 15;84:44-52.
    PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075
    Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
    Matched MeSH terms: Silanes/chemistry
  18. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1123-1127.
    Komposit UPR/LNR/gentian kaca telah disediakan dengan menggunakan resin poliester tak tepu daripada hasil pengitaran semula bahan buangan PET. Kajian dimulai dengan pengitaran semula botol minuman PET melalui proses glikolisis dan hasilnya ditindakbalaskan dengan maleik anhidrida untuk mendapatkan resin poliester tak tepu. Kajian diteruskan dengan penyediaan adunan resin poliester tak tepu (UPR) dengan cecair getah asli (LNR) iaitu komposisi penambahan LNR ke dalam UPR telah diubah dari 0-7.5% (wt). Komposisi UPR/LNR dengan sifat mekanik terbaik dipilih sebagai matrik untuk penyediaan komposit berpenguat gentian kaca. Rawatan silana ke atas gentian kaca turut dilakukan dengan menggunakan (3-Aminopropil)triethoxysilane. Hasil daripada kajian mendapati adunan UPR/LNR dengan penambahan 2.5% LNR mempunyai sifat mekanik dan morfologi terbaik dengan partikel-partikel getah yang bersaiz kecil dapat tersebar dengan sekata dalam UPR. Kajian juga menunjukkan berlakunya peningkatkan dalam nilai tegasan, modulus regangan dan kekuatan hentaman bagi komposit UPR/LNR/gentian kaca terawat berbanding dengan penggunaan gentian tanpa rawatan.
    Matched MeSH terms: Silanes
  19. Rosly NZ, Ahmad SA, Abdullah J, Yusof NA
    Sensors (Basel), 2016 Aug 25;16(9).
    PMID: 27571080 DOI: 10.3390/s16091365
    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.
    Matched MeSH terms: Silanes/chemistry*
  20. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Silanes/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links